CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 30 branching ratios uses 80 measurements and one constraint to determine 14 parameters. The overall fit has a $\chi {}^{2}$ = 61.8 for 67 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2  100
 x3   100
 x5    100
 x6     100
 x8      100
 x9       100
 x12        100
 x16         100
 x17          100
 x18           100
 x22            100
 x24             100
   x1  x2  x3  x5  x6  x8  x9  x12  x16  x17  x18  x22  x24
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($49.1$ $\pm0.5$) $ \times 10^{-2}$ 1.3
Γ2  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit K}_L^0}$ ${{\mathit K}_S^0}$  ($33.9$ $\pm0.4$) $ \times 10^{-2}$ 1.2
Γ3  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \rho}}{{\mathit \pi}}{+}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($15.4$ $\pm0.4$) $ \times 10^{-2}$ 1.2
Γ5  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \gamma}}$ ($1.301$ $\pm0.024$) $ \times 10^{-2}$ 1.2
Γ6  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($1.32$ $\pm0.05$) $ \times 10^{-3}$ 
Γ8  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($2.979$ $\pm0.033$) $ \times 10^{-4}$ 1.2
Γ9  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($2.85$ $\pm0.22$) $ \times 10^{-4}$ 1.2
Γ12  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \pi}^{0}}$ ($4.7$ $\pm0.5$) $ \times 10^{-5}$ 
Γ16  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit f}_{{{0}}}{(980)}}{{\mathit \gamma}}$ ($3.22$ $\pm0.19$) $ \times 10^{-4}$ 1.1
Γ17  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \gamma}}$ ($1.12$ $\pm0.06$) $ \times 10^{-4}$ 
Γ18  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.9$ ${}^{+2.8}_{-2.2}$) $ \times 10^{-6}$ 
Γ22  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit a}_{{{0}}}{(980)}}{{\mathit \gamma}}$ ($7.6$ $\pm0.6$) $ \times 10^{-5}$ 
Γ24  ${{\mathit \phi}{(1020)}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \gamma}}$ ($6.21$ $\pm0.20$) $ \times 10^{-5}$