CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to the total width, partial width, uses 14 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 10.7 for 12 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x2 100
 x5  100
 Γ${{\mathit K}^{*}{(892)}}$   100
   x2  x5 Γ${{\mathit K}^{*}{(892)}}$
 
    Mode RateScale factor

Γ2  ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ (${{\mathit K}}{{\mathit \pi}}$ )${}^{+-}$ ($99.902$ $\pm0.009$) $ \times 10^{-2}$ 
Γ5  ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ ${{\mathit K}^{\pm}}{{\mathit \gamma}}$ ($9.8$ $\pm0.9$) $ \times 10^{-4}$ 
Γ${{\mathit K}^{*}{(892)}}$ CHARGED ONLY, HADROPRODUCED $51.4$ $\pm0.8$ (MeV) 

 
An overall fit to the total width, partial width, uses 23 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 68.4 for 21 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x3 100
 x4  100
 Γ${{\mathit K}^{*}{(892)}}$   100
   x3  x4 Γ${{\mathit K}^{*}{(892)}}$
 
    Mode RateScale factor

Γ3  ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ (${{\mathit K}}{{\mathit \pi}}$ )${}^{0}$ ($99.754$ $\pm0.021$) $ \times 10^{-2}$ 
Γ4  ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \gamma}}$ ($2.46$ $\pm0.21$) $ \times 10^{-3}$ 
Γ${{\mathit K}^{*}{(892)}}$ NEUTRAL ONLY $47.3$ $\pm0.5$ (MeV) 2.0