CONSTRAINED FIT INFORMATION show precise values?

 An overall fit to the total width, partial width, uses 14 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 10.7 for 12 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.

 x2 100 x5 100 Γ${{\mathit K}^{*}{(892)}}$ 100 x2 x5 Γ${{\mathit K}^{*}{(892)}}$

 Mode Rate Scale factor Γ2 ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ (${{\mathit K}}{{\mathit \pi}}$ )${}^{+-}$ ($99.902$ $\pm0.009$) $\times 10^{-2}$ Γ5 ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ ${{\mathit K}^{\pm}}{{\mathit \gamma}}$ ($9.8$ $\pm0.9$) $\times 10^{-4}$ Γ${{\mathit K}^{*}{(892)}}$ CHARGED ONLY, HADROPRODUCED $51.4$ $\pm0.8$ (MeV)

 An overall fit to the total width, partial width, uses 23 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 68.4 for 21 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.

 x3 100 x4 100 Γ${{\mathit K}^{*}{(892)}}$ 100 x3 x4 Γ${{\mathit K}^{*}{(892)}}$

 Mode Rate Scale factor Γ3 ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ (${{\mathit K}}{{\mathit \pi}}$ )${}^{0}$ ($99.754$ $\pm0.021$) $\times 10^{-2}$ Γ4 ${{\mathit K}^{*}{(892)}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \gamma}}$ ($2.46$ $\pm0.21$) $\times 10^{-3}$ Γ${{\mathit K}^{*}{(892)}}$ NEUTRAL ONLY $47.3$ $\pm0.5$ (MeV) 2.0