A multiparticle fit to ${{\mathit \chi}_{{c0}}{(1P)}}$, ${{\mathit \chi}_{{c2}}{(1P)}}$, ${{\mathit \psi}{(2S)}}$ and ${{\mathit \chi}_{{c1}}{(1P)}}$ with 4 total widths, partial width,25 combinations of particle width obtained from integrated cross section,84 branching ratios uses 248 measurements and one constraint to determine 49 parameters. The overall fit has a $\chi {}^{2}$ = 379.8 for 200 degrees of freedom.
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 x1  100
 x2   100
 x8    100
 x30     100
 x32      100
 x36       100
 x42        100
 x43         100
 x51          100
 x56           100
 x58            100
 x71             100
 x93              100
 x97               100
 Γ                100
   x1  x2  x8  x30  x32  x36  x42  x43  x51  x56  x58  x71  x93  x97 Γ
  Mode Rate (MeV)Scale factor

Γ1  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) $0.0234$ $\pm0.0018$ 
Γ2  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($9.1$ $\pm2.9$) $ \times 10^{-3}$ 
Γ8  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $0.0181$ $\pm0.0014$ 
Γ30  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($7.5$ $\pm1.6$) $ \times 10^{-3}$ 
Γ32  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$  ($8.51$ $\pm0.33$) $ \times 10^{-3}$ 
Γ36  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$  ($3.01$ $\pm0.19$) $ \times 10^{-3}$ 
Γ42  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$  ($6.05$ $\pm0.31$) $ \times 10^{-3}$ 
Γ43  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($3.16$ $\pm0.17$) $ \times 10^{-3}$ 
Γ51  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  ($2.82$ $\pm0.29$) $ \times 10^{-3}$ 
Γ56  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$  ($8.0$ $\pm0.7$) $ \times 10^{-4}$ 
Γ58  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$  ($2.21$ $\pm0.08$) $ \times 10^{-4}$ 
Γ71  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$  ($3.59$ $\pm0.15$) $ \times 10^{-4}$ 
Γ93  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$  $0.0140$ $\pm0.0005$ 
Γ97  ${{\mathit \chi}_{{c0}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$  ($2.04$ $\pm0.09$) $ \times 10^{-4}$