CONSTRAINED FIT INFORMATION show precise values?
 
A multiparticle fit to ${{\mathit \chi}_{{{c0}}}{(1P)}}$, ${{\mathit \chi}_{{{c2}}}{(1P)}}$, ${{\mathit \psi}{(2S)}}$ and ${{\mathit \chi}_{{{c1}}}{(1P)}}$ with 4 total widths, partial width, 25 combinations of partial widths obtained from integrated cross section, and 88 branching ratios uses 255 measurements and one constraint to determine 49 parameters. The overall fit has a $\chi {}^{2}$ = 393.1 for 207 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2  100
 x8   100
 x30    100
 x32     100
 x36      100
 x42       100
 x43        100
 x51         100
 x57          100
 x59           100
 x73            100
 x100             100
 x104              100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$1               100
 x${{\mathit \psi}{(2S)}}$7                100
 x${{\mathit \psi}{(2S)}}$8                 100
 x${{\mathit \psi}{(2S)}}$9                  100
 x${{\mathit \psi}{(2S)}}$12                   100
 x${{\mathit \psi}{(2S)}}$13                    100
 x${{\mathit \psi}{(2S)}}$14                     100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$14                      100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$17                       100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$18                        100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$19                         100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$20                          100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$25                           100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$26                            100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$31                             100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$32                              100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$33                               100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$42                                100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$48                                 100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$51                                  100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$57                                   100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$59                                    100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$71                                     100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$73                                      100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$100                                       100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$102                                        100
 x${{\mathit \chi}_{{{c2}}}{(1P)}}$104                                         100
 x${{\mathit \psi}{(2S)}}$112                                          100
 x${{\mathit \psi}{(2S)}}$181                                           100
 x${{\mathit \psi}{(2S)}}$182                                            100
 x${{\mathit \psi}{(2S)}}$183                                             100
 Γ${{\mathit \psi}{(2S)}}$                                              100
 Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$                                               100
 Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$                                                100
 Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$                                                 100
   x1  x2  x8  x30  x32  x36  x42  x43  x51  x57  x59  x73  x100  x104  x${{\mathit \chi}_{{{c2}}}{(1P)}}$1  x${{\mathit \psi}{(2S)}}$7  x${{\mathit \psi}{(2S)}}$8  x${{\mathit \psi}{(2S)}}$9  x${{\mathit \psi}{(2S)}}$12  x${{\mathit \psi}{(2S)}}$13  x${{\mathit \psi}{(2S)}}$14  x${{\mathit \chi}_{{{c2}}}{(1P)}}$14  x${{\mathit \chi}_{{{c2}}}{(1P)}}$17  x${{\mathit \chi}_{{{c2}}}{(1P)}}$18  x${{\mathit \chi}_{{{c1}}}{(1P)}}$19  x${{\mathit \chi}_{{{c2}}}{(1P)}}$20  x${{\mathit \chi}_{{{c2}}}{(1P)}}$25  x${{\mathit \chi}_{{{c2}}}{(1P)}}$26  x${{\mathit \chi}_{{{c2}}}{(1P)}}$31  x${{\mathit \chi}_{{{c2}}}{(1P)}}$32  x${{\mathit \chi}_{{{c2}}}{(1P)}}$33  x${{\mathit \chi}_{{{c2}}}{(1P)}}$42  x${{\mathit \chi}_{{{c1}}}{(1P)}}$48  x${{\mathit \chi}_{{{c2}}}{(1P)}}$51  x${{\mathit \chi}_{{{c2}}}{(1P)}}$57  x${{\mathit \chi}_{{{c1}}}{(1P)}}$59  x${{\mathit \chi}_{{{c2}}}{(1P)}}$71  x${{\mathit \chi}_{{{c1}}}{(1P)}}$73  x${{\mathit \chi}_{{{c2}}}{(1P)}}$100  x${{\mathit \chi}_{{{c1}}}{(1P)}}$102  x${{\mathit \chi}_{{{c2}}}{(1P)}}$104  x${{\mathit \psi}{(2S)}}$112  x${{\mathit \psi}{(2S)}}$181  x${{\mathit \psi}{(2S)}}$182  x${{\mathit \psi}{(2S)}}$183 Γ${{\mathit \psi}{(2S)}}$  Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$
 
    Mode RateScale factor

Γ1 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($2.18$ $\pm0.11$) $ \times 10^{-2}$ 1.2
Γ2 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.5$ $\pm2.7$) $ \times 10^{-3}$ 
Γ8 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.81$ $\pm0.16$) $ \times 10^{-2}$ 1.2
Γ30 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($7.4$ $\pm1.6$) $ \times 10^{-3}$ 
Γ32 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($8.6$ $\pm0.4$) $ \times 10^{-3}$ 1.2
Γ36 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($3.02$ $\pm0.25$) $ \times 10^{-3}$ 1.3
Γ42 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($6.07$ $\pm0.33$) $ \times 10^{-3}$ 1.1
Γ43 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($3.18$ $\pm0.19$) $ \times 10^{-3}$ 1.1
Γ51 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.8$ $\pm0.4$) $ \times 10^{-3}$ 1.5
Γ57 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($8.48$ $\pm0.31$) $ \times 10^{-4}$ 
Γ59 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.21$ $\pm0.14$) $ \times 10^{-4}$ 1.6
Γ73 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($3.61$ $\pm0.16$) $ \times 10^{-4}$ 1.1
Γ100 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($1.41$ $\pm0.09$) $ \times 10^{-2}$ 1.7
Γ104 ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.06$ $\pm0.10$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$1 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($1.12$ $\pm0.08$) $ \times 10^{-2}$ 1.5
Γ${{\mathit \psi}{(2S)}}$7 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.94$ $\pm0.22$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \psi}{(2S)}}$8 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($8.0$ $\pm0.6$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$9 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ($3.1$ $\pm0.4$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$12 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($34.69$ $\pm0.34$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$13 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ ($18.2$ $\pm0.5$) $ \times 10^{-2}$ 1.6
Γ${{\mathit \psi}{(2S)}}$14 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$ ($3.37$ $\pm0.06$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$14 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.4$ $\pm1.1$) $ \times 10^{-3}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$17 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($2.1$ $\pm1.0$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$18 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($2.2$ $\pm0.9$) $ \times 10^{-3}$ 2.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$19 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($7.0$ $\pm0.6$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$20 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.23$ $\pm0.07$) $ \times 10^{-3}$ 1.9
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$25 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($2.26$ $\pm0.10$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$26 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.0$ $\pm1.7$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$31 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($5.5$ $\pm0.4$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$32 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.02$ $\pm0.15$) $ \times 10^{-3}$ 2.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$33 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($5.3$ $\pm0.4$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$42 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($1.30$ $\pm0.19$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$48 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($5.4$ $\pm1.1$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$51 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.67$ $\pm0.22$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$57 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.3$ $\pm0.4$) $ \times 10^{-5}$ 1.1
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$59 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.6$ $\pm0.4$) $ \times 10^{-5}$ 1.2
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$71 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.86$ $\pm0.16$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$73 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.27$ $\pm0.09$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$100 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($19.5$ $\pm0.7$) $ \times 10^{-2}$ 1.5
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$102 ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($34.3$ $\pm1.3$) $ \times 10^{-2}$ 1.3
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$104 ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.91$ $\pm0.12$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \psi}{(2S)}}$112 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.94$ $\pm0.09$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \psi}{(2S)}}$181 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c0}}}{(1P)}}$ ($9.75$ $\pm0.22$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$182 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c1}}}{(1P)}}$ ($9.75$ $\pm0.27$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$183 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c2}}}{(1P)}}$ ($9.38$ $\pm0.23$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \psi}{(2S)}}$ ${{\mathit \psi}{(2S)}}$ WIDTH $293$ $\pm9$ (keV) 1.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}$ WIDTH $0.84$ $\pm0.04$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}$ WIDTH $1.97$ $\pm0.09$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$ ${{\mathit \chi}_{{{c0}}}{(1P)}}$ WIDTH $10.9$ $\pm0.6$ (MeV) 1.1