CONSTRAINED FIT INFORMATION show precise values?
 
A multiparticle fit to ${{\mathit \chi}_{{{c2}}}{(1P)}}$, ${{\mathit \chi}_{{{c0}}}{(1P)}}$, ${{\mathit \psi}{(2S)}}$ and ${{\mathit \chi}_{{{c1}}}{(1P)}}$ with 4 total widths, partial width, 25 combinations of partial widths obtained from integrated cross section, and 86 branching ratios uses 253 measurements and one constraint to determine 49 parameters. The overall fit has a $\chi {}^{2}$ = 389.6 for 205 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x14  100
 x17   100
 x18    100
 x20     100
 x25      100
 x26       100
 x31        100
 x32         100
 x33          100
 x42           100
 x51            100
 x56             100
 x69              100
 x94               100
 x98                100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$1                 100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$2                  100
 x${{\mathit \psi}{(2S)}}$7                   100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$8                    100
 x${{\mathit \psi}{(2S)}}$8                     100
 x${{\mathit \psi}{(2S)}}$9                      100
 x${{\mathit \psi}{(2S)}}$12                       100
 x${{\mathit \psi}{(2S)}}$13                        100
 x${{\mathit \psi}{(2S)}}$14                         100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$19                          100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$30                           100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$32                            100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$36                             100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$42                              100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$43                               100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$48                                100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$51                                 100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$56                                  100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$58                                   100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$58                                    100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$71                                     100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$71                                      100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$94                                       100
 x${{\mathit \chi}_{{{c1}}}{(1P)}}$96                                        100
 x${{\mathit \chi}_{{{c0}}}{(1P)}}$98                                         100
 x${{\mathit \psi}{(2S)}}$111                                          100
 x${{\mathit \psi}{(2S)}}$179                                           100
 x${{\mathit \psi}{(2S)}}$180                                            100
 x${{\mathit \psi}{(2S)}}$181                                             100
 Γ${{\mathit \psi}{(2S)}}$                                              100
 Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$                                               100
 Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$                                                100
 Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$                                                 100
   x1  x14  x17  x18  x20  x25  x26  x31  x32  x33  x42  x51  x56  x69  x94  x98  x${{\mathit \chi}_{{{c0}}}{(1P)}}$1  x${{\mathit \chi}_{{{c0}}}{(1P)}}$2  x${{\mathit \psi}{(2S)}}$7  x${{\mathit \chi}_{{{c0}}}{(1P)}}$8  x${{\mathit \psi}{(2S)}}$8  x${{\mathit \psi}{(2S)}}$9  x${{\mathit \psi}{(2S)}}$12  x${{\mathit \psi}{(2S)}}$13  x${{\mathit \psi}{(2S)}}$14  x${{\mathit \chi}_{{{c1}}}{(1P)}}$19  x${{\mathit \chi}_{{{c0}}}{(1P)}}$30  x${{\mathit \chi}_{{{c0}}}{(1P)}}$32  x${{\mathit \chi}_{{{c0}}}{(1P)}}$36  x${{\mathit \chi}_{{{c0}}}{(1P)}}$42  x${{\mathit \chi}_{{{c0}}}{(1P)}}$43  x${{\mathit \chi}_{{{c1}}}{(1P)}}$48  x${{\mathit \chi}_{{{c0}}}{(1P)}}$51  x${{\mathit \chi}_{{{c0}}}{(1P)}}$56  x${{\mathit \chi}_{{{c1}}}{(1P)}}$58  x${{\mathit \chi}_{{{c0}}}{(1P)}}$58  x${{\mathit \chi}_{{{c0}}}{(1P)}}$71  x${{\mathit \chi}_{{{c1}}}{(1P)}}$71  x${{\mathit \chi}_{{{c0}}}{(1P)}}$94  x${{\mathit \chi}_{{{c1}}}{(1P)}}$96  x${{\mathit \chi}_{{{c0}}}{(1P)}}$98  x${{\mathit \psi}{(2S)}}$111  x${{\mathit \psi}{(2S)}}$179  x${{\mathit \psi}{(2S)}}$180  x${{\mathit \psi}{(2S)}}$181 Γ${{\mathit \psi}{(2S)}}$  Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$  Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$
 
    Mode RateScale factor

Γ1  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($1.00$ $\pm0.13$) $ \times 10^{-2}$ 1.4
Γ14  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.3$ $\pm1.1$) $ \times 10^{-3}$ 1.2
Γ17  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($2.1$ $\pm1.0$) $ \times 10^{-3}$ 
Γ18  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\overline{\mathit K}}^{*}{(892)}^{0}}$ ($2.2$ $\pm0.9$) $ \times 10^{-3}$ 2.3
Γ20  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.23$ $\pm0.07$) $ \times 10^{-3}$ 1.9
Γ25  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($2.27$ $\pm0.10$) $ \times 10^{-3}$ 1.0
Γ26  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.6$ $\pm1.5$) $ \times 10^{-3}$ 
Γ31  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($5.5$ $\pm0.5$) $ \times 10^{-4}$ 
Γ32  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.02$ $\pm0.15$) $ \times 10^{-3}$ 2.3
Γ33  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($5.3$ $\pm0.4$) $ \times 10^{-4}$ 
Γ42  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($1.30$ $\pm0.19$) $ \times 10^{-3}$ 
Γ51  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.67$ $\pm0.22$) $ \times 10^{-3}$ 1.1
Γ56  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.3$ $\pm0.4$) $ \times 10^{-5}$ 1.1
Γ69  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.86$ $\pm0.16$) $ \times 10^{-4}$ 
Γ94  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($19.5$ $\pm0.8$) $ \times 10^{-2}$ 1.5
Γ98  ${{\mathit \chi}_{{{c2}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.92$ $\pm0.12$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$1  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($2.3$ $\pm0.4$) $ \times 10^{-2}$ 2.0
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$2  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($9.1$ $\pm3.1$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \psi}{(2S)}}$7  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ ($7.94$ $\pm0.22$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$8  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($1.82$ $\pm0.16$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \psi}{(2S)}}$8  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($8.0$ $\pm0.6$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$9  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \tau}^{+}}{{\mathit \tau}^{-}}$ ($3.1$ $\pm0.4$) $ \times 10^{-3}$ 
Γ${{\mathit \psi}{(2S)}}$12  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($34.69$ $\pm0.34$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$13  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ ($18.2$ $\pm0.5$) $ \times 10^{-2}$ 1.6
Γ${{\mathit \psi}{(2S)}}$14  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \eta}}$ ($3.37$ $\pm0.06$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$19  ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}$ + c.c. ($7.0$ $\pm0.6$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$30  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \pi}^{-}}$ + c.c. ($7.5$ $\pm1.6$) $ \times 10^{-3}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$32  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \pi}}{{\mathit \pi}}$ ($8.5$ $\pm0.4$) $ \times 10^{-3}$ 1.2
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$36  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}}$ ($3.01$ $\pm0.25$) $ \times 10^{-3}$ 1.3
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$42  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($6.07$ $\pm0.33$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$43  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}_S^0}$  ($3.17$ $\pm0.19$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$48  ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($5.4$ $\pm1.1$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$51  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.8$ $\pm0.4$) $ \times 10^{-3}$ 1.5
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$56  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($8.48$ $\pm0.31$) $ \times 10^{-4}$ 
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$58  ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($7.6$ $\pm0.4$) $ \times 10^{-5}$ 1.2
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$58  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.21$ $\pm0.14$) $ \times 10^{-4}$ 1.6
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$71  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($3.60$ $\pm0.17$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$71  ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.27$ $\pm0.09$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$94  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($1.41$ $\pm0.09$) $ \times 10^{-2}$ 1.7
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$96  ${{\mathit \chi}_{{{c1}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit J / \psi}{(1S)}}$ ($34.3$ $\pm1.3$) $ \times 10^{-2}$ 1.3
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$98  ${{\mathit \chi}_{{{c0}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($2.04$ $\pm0.10$) $ \times 10^{-4}$ 1.1
Γ${{\mathit \psi}{(2S)}}$111  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($2.94$ $\pm0.09$) $ \times 10^{-4}$ 1.3
Γ${{\mathit \psi}{(2S)}}$179  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c0}}}{(1P)}}$ ($9.77$ $\pm0.23$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$180  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c1}}}{(1P)}}$ ($9.75$ $\pm0.27$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \psi}{(2S)}}$181  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \chi}_{{{c2}}}{(1P)}}$ ($9.36$ $\pm0.23$) $ \times 10^{-2}$ 1.2
Γ${{\mathit \psi}{(2S)}}$ ${{\mathit \psi}{(2S)}}$ WIDTH $293$ $\pm9$ (keV) 1.2
Γ${{\mathit \chi}_{{{c1}}}{(1P)}}$ ${{\mathit \chi}_{{{c1}}}{(1P)}}$ WIDTH $0.84$ $\pm0.04$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c2}}}{(1P)}}$ ${{\mathit \chi}_{{{c2}}}{(1P)}}$ WIDTH $1.98$ $\pm0.09$ (MeV) 1.1
Γ${{\mathit \chi}_{{{c0}}}{(1P)}}$ ${{\mathit \chi}_{{{c0}}}{(1P)}}$ WIDTH $10.7$ $\pm0.6$ (MeV) 1.1