CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to mean life,15 branching ratios uses 27 measurements and one constraint to determine 11 parameters. The overall fit has a $\chi {}^{2}$ = 37.4 for 17 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x6    100
 x7     100
 x8      100
 x9       100
 x13        100
 x14         100
 x17          100
 x19           100
 Γ            100
   x1  x2  x6  x7  x8  x9  x13  x14  x17  x19 Γ
 
  Mode Rate (s${}^{-1}$)Scale factor

Γ1  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{{\mathit e}^{\mp}}{{\mathit \nu}_{{e}}}$  $0.4055$ $\pm0.0011$ 1.7
Γ2  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{\pm}}{{\mathit \mu}^{\mp}}{{\mathit \nu}_{{\mu}}}$  $0.2704$ $\pm0.0007$ 1.1
Γ6  ${{\mathit K}_L^0}$ $\rightarrow$ 3 ${{\mathit \pi}^{0}}$  $0.1952$ $\pm0.0012$ 1.6
Γ7  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.1254$ $\pm0.0005$ 
Γ8  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.001967$ $\pm0.000010$ 1.5
Γ9  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$  ($8.64$ $\pm0.06$) $ \times 10^{-4}$ 1.8
Γ13  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$  ($4.15$ $\pm0.15$) $ \times 10^{-5}$ 2.8
Γ14  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \gamma}}$ (DE) ($2.84$ $\pm0.11$) $ \times 10^{-5}$ 2.0
Γ17  ${{\mathit K}_L^0}$ $\rightarrow$ 2 ${{\mathit \gamma}}$  ($5.47$ $\pm0.04$) $ \times 10^{-4}$ 1.1
Γ19  ${{\mathit K}_L^0}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \gamma}}$  ($9.4$ $\pm0.4$) $ \times 10^{-6}$ 2.0