CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 33 branching ratios uses 43 measurements to determine 17 parameters. The overall fit has a $\chi {}^{2}$ = 64.4 for 26 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x18 100
 x19  100
 x26   100
 x30    100
 x39     100
 x41      100
 x50       100
 x52        100
 x86         100
 x98          100
 x119           100
 x122            100
 x131             100
 x133              100
 x160               100
 x161                100
 x162                 100
   x18  x19  x26  x30  x39  x41  x50  x52  x86  x98  x119  x122  x131  x133  x160  x161  x162
 
    Mode Fraction (Γi / Γ)Scale factor

Γ18  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\overline{\mathit K}}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($8.76$ $\pm0.19$) $ \times 10^{-2}$ 
Γ19  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($4.02$ $\pm0.18$) $ \times 10^{-2}$ 3.2
Γ26  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($5.40$ $\pm0.10$) $ \times 10^{-2}$ 1.1
Γ30  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\overline{\mathit K}}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($5.27$ $\pm0.15$) $ \times 10^{-2}$ 
Γ39  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($2.49$ $\pm0.11$) $ \times 10^{-3}$ 1.2
Γ41  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($1.90$ $\pm0.10$) $ \times 10^{-3}$ 1.2
Γ50  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}$ ($1.562$ $\pm0.031$) $ \times 10^{-2}$ 1.7
Γ52  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}$ ($9.38$ $\pm0.16$) $ \times 10^{-2}$ 1.6
Γ86  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{-}}$3 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.7$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ98  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($1.247$ $\pm0.033$) $ \times 10^{-3}$ 
Γ119  ${{\mathit D}^{+}}$ $\rightarrow$ 3 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ ($1.66$ $\pm0.16$) $ \times 10^{-3}$ 1.1
Γ122  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{+}}$ ($3.77$ $\pm0.09$) $ \times 10^{-3}$ 
Γ131  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{+}}$ ($4.97$ $\pm0.19$) $ \times 10^{-3}$ 
Γ133  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}$ ($3.04$ $\pm0.09$) $ \times 10^{-3}$ 2.2
Γ160  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{0}}$ ($2.08$ $\pm0.21$) $ \times 10^{-4}$ 1.4
Γ161  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \eta}}$ ($1.25$ $\pm0.16$) $ \times 10^{-4}$ 1.1
Γ162  ${{\mathit D}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \eta}^{\,'}{(958)}}$ ($1.85$ $\pm0.20$) $ \times 10^{-4}$