CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 66 branching ratios uses 128 measurements and one constraint to determine 33 parameters. The overall fit has a $\chi {}^{2}$ = 143.7 for 96 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x19   100
 x20    100
 x21     100
 x30      100
 x31       100
 x36        100
 x37         100
 x39          100
 x54           100
 x71            100
 x82             100
 x86              100
 x93               100
 x107                100
 x108                 100
 x109                  100
 x124                   100
 x131                    100
 x132                     100
 x133                      100
 x151                       100
 x179                        100
 x189                         100
 x191                          100
 x194                           100
 x195                            100
 x196                             100
 x197                              100
 x208                               100
 x267                                100
 x271                                 100
 x336                                  100
   x6  x19  x20  x21  x30  x31  x36  x37  x39  x54  x71  x82  x86  x93  x107  x108  x109  x124  x131  x132  x133  x151  x179  x189  x191  x194  x195  x196  x197  x208  x267  x271  x336
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ anything $0.068$ $\pm0.006$ 
Γ19  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.03541$ $\pm0.00034$ 1.3
Γ20  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$  $0.0341$ $\pm0.0004$ 1.0
Γ21  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.0215$ $\pm0.0016$ 
Γ30  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{e}}}$  $0.00291$ $\pm0.00004$ 1.0
Γ31  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$  $0.00267$ $\pm0.00012$ 1.3
Γ36  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.03946$ $\pm0.00030$ 1.2
Γ37  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$  $0.01239$ $\pm0.00022$ 
Γ39  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0280$ $\pm0.0018$ 1.1
Γ54  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.144$ $\pm0.005$ 2.0
Γ71  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0822$ $\pm0.0014$ 1.1
Γ82  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.052$ $\pm0.006$ 
Γ86  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.043$ $\pm0.004$ 
Γ93  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \eta}}$  $0.0188$ $\pm0.0005$ 1.4
Γ107  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}}$  $0.00508$ $\pm0.00013$ 
Γ108  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \omega}}$  $0.0111$ $\pm0.0006$ 
Γ109  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}^{\,'}{(958)}}$  $0.00949$ $\pm0.00032$ 
Γ124  ${{\mathit D}^{0}}$ $\rightarrow$ 3 ${{\mathit K}_S^0}$  ($7.5$ $\pm0.7$) $ \times 10^{-4}$ 1.4
Γ131  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.001453$ $\pm0.000024$ 1.4
Γ132  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$  ($8.26$ $\pm0.25$) $ \times 10^{-4}$ 
Γ133  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$  $0.0149$ $\pm0.0006$ 2.1
Γ151  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$  $0.00755$ $\pm0.00020$ 
Γ179  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$  ($6.3$ $\pm0.6$) $ \times 10^{-4}$ 1.1
Γ189  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{0}}$  ($9.2$ $\pm1.0$) $ \times 10^{-4}$ 
Γ191  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \eta}}$  $0.00211$ $\pm0.00019$ 2.3
Γ194  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}^{\,'}{(958)}}$  $0.00101$ $\pm0.00019$ 
Γ195  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$  $0.00408$ $\pm0.00006$ 1.6
Γ196  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit K}_S^0}$  ($1.41$ $\pm0.05$) $ \times 10^{-4}$ 1.1
Γ197  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.0033$ $\pm0.0005$ 1.1
Γ208  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  $0.00217$ $\pm0.00034$ 1.1
Γ267  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \gamma}}$  ($2.81$ $\pm0.19$) $ \times 10^{-5}$ 
Γ271  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.50$ $\pm0.07$) $ \times 10^{-4}$ 3.0
Γ336  ${{\mathit D}^{0}}$ $\rightarrow$ Unaccounted decay modes $0.350$ $\pm0.012$ 1.1

 
An overall fit to 3 branching ratios uses 3 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi {}^{2}$ = 0.0 for 0 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x3    100
 x4     100
   x1  x2  x3  x4
 
  Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit D}^{0}}$ $\rightarrow$ 0-prongs $0.15$ $\pm0.06$ 
Γ2  ${{\mathit D}^{0}}$ $\rightarrow$ 2-prongs $0.71$ $\pm0.06$ 
Γ3  ${{\mathit D}^{0}}$ $\rightarrow$ 4-prongs $0.146$ $\pm0.005$ 
Γ4  ${{\mathit D}^{0}}$ $\rightarrow$ 6-prongs ($6.5$ $\pm1.3$) $ \times 10^{-4}$