CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 68 branching ratios uses 134 measurements to determine 33 parameters. The overall fit has a $\chi {}^{2}$ = 149.3 for 101 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x6 100
 x20  100
 x21   100
 x22    100
 x31     100
 x32      100
 x38       100
 x39        100
 x44         100
 x59          100
 x78           100
 x89            100
 x95             100
 x104              100
 x118               100
 x119                100
 x120                 100
 x134                  100
 x141                   100
 x142                    100
 x143                     100
 x161                      100
 x190                       100
 x204                        100
 x206                         100
 x210                          100
 x211                           100
 x212                            100
 x213                             100
 x224                              100
 x285                               100
 x289                                100
 x296                                 100
   x6  x20  x21  x22  x31  x32  x38  x39  x44  x59  x78  x89  x95  x104  x118  x119  x120  x134  x141  x142  x143  x161  x190  x204  x206  x210  x211  x212  x213  x224  x285  x289  x296
 
    Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ anything ($6.8$ $\pm0.6$) $ \times 10^{-2}$ 
Γ20  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($3.549$ $\pm0.026$) $ \times 10^{-2}$ 1.2
Γ21  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($3.41$ $\pm0.04$) $ \times 10^{-2}$ 
Γ22  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($2.15$ $\pm0.16$) $ \times 10^{-2}$ 
Γ31  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ ($2.91$ $\pm0.04$) $ \times 10^{-3}$ 1.0
Γ32  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$ ($2.67$ $\pm0.12$) $ \times 10^{-3}$ 1.3
Γ38  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($3.947$ $\pm0.030$) $ \times 10^{-2}$ 1.2
Γ39  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ ($1.240$ $\pm0.022$) $ \times 10^{-2}$ 
Γ44  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($2.80$ $\pm0.18$) $ \times 10^{-2}$ 1.1
Γ59  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($14.4$ $\pm0.6$) $ \times 10^{-2}$ 2.2
Γ78  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.22$ $\pm0.14$) $ \times 10^{-2}$ 1.0
Γ89  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($5.2$ $\pm0.6$) $ \times 10^{-2}$ 1.0
Γ95  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($4.3$ $\pm0.4$) $ \times 10^{-2}$ 
Γ104  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \eta}}$ ($1.88$ $\pm0.05$) $ \times 10^{-2}$ 1.4
Γ118  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}}$ ($5.09$ $\pm0.13$) $ \times 10^{-3}$ 
Γ119  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \omega}}$ ($1.11$ $\pm0.06$) $ \times 10^{-2}$ 
Γ120  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \eta}^{\,'}{(958)}}$ ($9.49$ $\pm0.32$) $ \times 10^{-3}$ 
Γ134  ${{\mathit D}^{0}}$ $\rightarrow$ 3 ${{\mathit K}_S^0}$  ($7.5$ $\pm0.7$) $ \times 10^{-4}$ 1.4
Γ141  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.454$ $\pm0.024$) $ \times 10^{-3}$ 1.4
Γ142  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{0}}$ ($8.26$ $\pm0.25$) $ \times 10^{-4}$ 
Γ143  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($1.49$ $\pm0.07$) $ \times 10^{-2}$ 2.3
Γ161  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ ($7.56$ $\pm0.20$) $ \times 10^{-3}$ 
Γ190  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{0}}$ ($6.3$ $\pm0.6$) $ \times 10^{-4}$ 1.1
Γ204  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}^{0}}$ ($9.2$ $\pm1.0$) $ \times 10^{-4}$ 
Γ206  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit \eta}}$ ($2.11$ $\pm0.19$) $ \times 10^{-3}$ 2.2
Γ210  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \eta}^{\,'}{(958)}}$ ($1.01$ $\pm0.19$) $ \times 10^{-3}$ 
Γ211  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ($4.08$ $\pm0.06$) $ \times 10^{-3}$ 1.6
Γ212  ${{\mathit D}^{0}}$ $\rightarrow$ 2 ${{\mathit K}_S^0}$  ($1.41$ $\pm0.05$) $ \times 10^{-4}$ 1.1
Γ213  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($3.3$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ224  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($2.17$ $\pm0.35$) $ \times 10^{-3}$ 1.1
Γ285  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \gamma}}$ ($2.81$ $\pm0.19$) $ \times 10^{-5}$ 
Γ289  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($1.50$ $\pm0.07$) $ \times 10^{-4}$ 3.0
Γ296  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ ($3.06$ $\pm0.16$) $ \times 10^{-4}$ 1.4

 
An overall fit to 3 branching ratios uses 3 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi {}^{2}$ = 0.0 for 0 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2  100
 x3   100
   x1  x2  x3
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit D}^{0}}$ $\rightarrow$ 0-prongs ($15$ $\pm6$) $ \times 10^{-2}$ 
Γ2  ${{\mathit D}^{0}}$ $\rightarrow$ 2-prongs ($71$ $\pm6$) $ \times 10^{-2}$ 
Γ3  ${{\mathit D}^{0}}$ $\rightarrow$ 4-prongs ($14.6$ $\pm0.5$) $ \times 10^{-2}$