CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 48 branching ratios uses 75 measurements to determine 23 parameters. The overall fit has a $\chi {}^{2}$ = 52.8 for 52 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x2  100
 x16   100
 x19    100
 x20     100
 x21      100
 x30       100
 x43        100
 x45         100
 x49          100
 x56           100
 x60            100
 x62             100
 x64              100
 x67               100
 x69                100
 x72                 100
 x73                  100
 x75                   100
 x77                    100
 x80                     100
 x81                      100
 x82                       100
   x1  x2  x16  x19  x20  x21  x30  x43  x45  x49  x56  x60  x62  x64  x67  x69  x72  x73  x75  x77  x80  x81  x82
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$  ($1.59$ $\pm0.07$) $ \times 10^{-2}$ 1.1
Γ2  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($6.24$ $\pm0.28$) $ \times 10^{-2}$ 1.4
Γ16  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ ($1.96$ $\pm0.12$) $ \times 10^{-2}$ 1.0
Γ19  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \eta}}$ ($8.8$ $\pm0.6$) $ \times 10^{-3}$ 1.1
Γ20  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.59$ $\pm0.11$) $ \times 10^{-2}$ 1.1
Γ21  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($4.43$ $\pm0.28$) $ \times 10^{-2}$ 1.5
Γ30  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}^{\,'}}$ ($4.8$ $\pm0.9$) $ \times 10^{-4}$ 
Γ43  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}$ ($1.29$ $\pm0.05$) $ \times 10^{-2}$ 1.1
Γ45  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($7.02$ $\pm0.35$) $ \times 10^{-2}$ 1.1
Γ49  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ ($3.61$ $\pm0.26$) $ \times 10^{-2}$ 1.4
Γ56  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \eta}}$ ($1.84$ $\pm0.11$) $ \times 10^{-2}$ 1.1
Γ60  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($5.6$ $\pm1.1$) $ \times 10^{-3}$ 1.9
Γ62  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{+}}$ ($1.27$ $\pm0.06$) $ \times 10^{-2}$ 1.1
Γ64  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{0}}$ ($1.24$ $\pm0.09$) $ \times 10^{-2}$ 
Γ67  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.47$ $\pm0.22$) $ \times 10^{-2}$ 1.2
Γ69  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}$2 ${{\mathit \pi}^{+}}$ ($1.86$ $\pm0.18$) $ \times 10^{-2}$ 
Γ72  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ ($1.10$ $\pm0.30$) $ \times 10^{-2}$ 
Γ73  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \omega}}$ ($1.69$ $\pm0.20$) $ \times 10^{-2}$ 
Γ75  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($3.59$ $\pm0.35$) $ \times 10^{-3}$ 1.1
Γ77  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \phi}}$ ($3.9$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ80  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{0}}{{\mathit K}^{+}}$ ($5.5$ $\pm0.7$) $ \times 10^{-3}$ 
Γ81  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}$ ($6.2$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ82  ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{+}}$ ($4.3$ $\pm0.9$) $ \times 10^{-3}$ 1.1