CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 55 branching ratios uses 85 measurements to determine 26 parameters. The overall fit has a $\chi {}^{2}$ = 58.8 for 59 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x3  100
 x17   100
 x23    100
 x24     100
 x26      100
 x34       100
 x35        100
 x36         100
 x45          100
 x50           100
 x52            100
 x56             100
 x63              100
 x67               100
 x69                100
 x71                 100
 x74                  100
 x76                   100
 x79                    100
 x80                     100
 x82                      100
 x84                       100
 x87                        100
 x88                         100
 x90                          100
   x1  x3  x17  x23  x24  x26  x34  x35  x36  x45  x50  x52  x56  x63  x67  x69  x71  x74  x76  x79  x80  x82  x84  x87  x88  x90
 
    Mode Fraction (Γi / Γ)Scale factor

Γ1 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$  ($1.61$ $\pm0.07$) $ \times 10^{-2}$ 1.1
Γ3 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($6.35$ $\pm0.25$) $ \times 10^{-2}$ 1.3
Γ17 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ ($1.99$ $\pm0.12$) $ \times 10^{-2}$ 
Γ23 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \eta}}$ ($8.9$ $\pm0.6$) $ \times 10^{-3}$ 1.1
Γ24 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.62$ $\pm0.11$) $ \times 10^{-2}$ 1.1
Γ26 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($4.52$ $\pm0.28$) $ \times 10^{-2}$ 1.5
Γ34 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}}$ ($1.49$ $\pm0.08$) $ \times 10^{-3}$ 1.1
Γ35 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}^{\,'}}$ ($4.9$ $\pm0.9$) $ \times 10^{-4}$ 
Γ36 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \omega}{(782)}^{0}}$ ($8.9$ $\pm1.1$) $ \times 10^{-4}$ 1.2
Γ45 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \phi}}$ ($1.05$ $\pm0.14$) $ \times 10^{-3}$ 1.1
Γ50 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}$ ($1.31$ $\pm0.05$) $ \times 10^{-2}$ 1.1
Γ52 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($7.10$ $\pm0.34$) $ \times 10^{-2}$ 1.1
Γ56 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ ($3.67$ $\pm0.26$) $ \times 10^{-2}$ 1.4
Γ63 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \eta}}$ ($1.87$ $\pm0.11$) $ \times 10^{-2}$ 1.1
Γ67 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($5.7$ $\pm1.1$) $ \times 10^{-3}$ 2.0
Γ69 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{+}}$ ($1.29$ $\pm0.05$) $ \times 10^{-2}$ 1.0
Γ71 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{0}}$ ($1.26$ $\pm0.10$) $ \times 10^{-2}$ 1.1
Γ74 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.54$ $\pm0.20$) $ \times 10^{-2}$ 1.2
Γ76 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}$2 ${{\mathit \pi}^{+}}$ ($1.87$ $\pm0.18$) $ \times 10^{-2}$ 
Γ79 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ ($1.12$ $\pm0.31$) $ \times 10^{-2}$ 
Γ80 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \omega}}$ ($1.72$ $\pm0.20$) $ \times 10^{-2}$ 
Γ82 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($3.6$ $\pm0.4$) $ \times 10^{-3}$ 1.1
Γ84 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \phi}}$ ($4.0$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ87 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{0}}{{\mathit K}^{+}}$ ($5.5$ $\pm0.7$) $ \times 10^{-3}$ 
Γ88 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}$ ($6.3$ $\pm0.5$) $ \times 10^{-3}$ 1.1
Γ90 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{+}}$ ($4.9$ $\pm0.6$) $ \times 10^{-3}$ 1.1