CONSTRAINED FIT INFORMATION show precise values?

 An overall fit to and 48 branching ratios uses 75 measurements to determine 23 parameters. The overall fit has a $\chi {}^{2}$ = 52.8 for 52 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$p$_{i}\delta$p$_{j}$> $/$ ($\mathit \delta$p$_{i}\cdot{}\delta$p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.

 x1 100 x2 100 x16 100 x19 100 x20 100 x21 100 x30 100 x43 100 x45 100 x49 100 x56 100 x60 100 x62 100 x64 100 x67 100 x69 100 x72 100 x73 100 x75 100 x77 100 x80 100 x81 100 x82 100 x1 x2 x16 x19 x20 x21 x30 x43 x45 x49 x56 x60 x62 x64 x67 x69 x72 x73 x75 x77 x80 x81 x82

 Mode Fraction (Γi / Γ) Scale factor Γ1 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ($1.59$ $\pm0.07$) $\times 10^{-2}$ 1.1 Γ2 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($6.24$ $\pm0.28$) $\times 10^{-2}$ 1.4 Γ16 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ ($1.96$ $\pm0.12$) $\times 10^{-2}$ 1.0 Γ19 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit K}}^{0}}{{\mathit \eta}}$ ($8.8$ $\pm0.6$) $\times 10^{-3}$ 1.1 Γ20 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($1.59$ $\pm0.11$) $\times 10^{-2}$ 1.1 Γ21 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($4.43$ $\pm0.28$) $\times 10^{-2}$ 1.5 Γ30 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}^{\,'}}$ ($4.8$ $\pm0.9$) $\times 10^{-4}$ Γ43 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}$ ($1.29$ $\pm0.05$) $\times 10^{-2}$ 1.1 Γ45 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ ($7.02$ $\pm0.35$) $\times 10^{-2}$ 1.1 Γ49 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ ($3.61$ $\pm0.26$) $\times 10^{-2}$ 1.4 Γ56 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \eta}}$ ($1.84$ $\pm0.11$) $\times 10^{-2}$ 1.1 Γ60 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($5.6$ $\pm1.1$) $\times 10^{-3}$ 1.9 Γ62 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{+}}$ ($1.27$ $\pm0.06$) $\times 10^{-2}$ 1.1 Γ64 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{0}}$ ($1.24$ $\pm0.09$) $\times 10^{-2}$ Γ67 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.47$ $\pm0.22$) $\times 10^{-2}$ 1.2 Γ69 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}$2 ${{\mathit \pi}^{+}}$ ($1.86$ $\pm0.18$) $\times 10^{-2}$ Γ72 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ ($1.10$ $\pm0.30$) $\times 10^{-2}$ Γ73 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \omega}}$ ($1.69$ $\pm0.20$) $\times 10^{-2}$ Γ75 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($3.59$ $\pm0.35$) $\times 10^{-3}$ 1.1 Γ77 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \phi}}$ ($3.9$ $\pm0.5$) $\times 10^{-3}$ 1.1 Γ80 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{0}}{{\mathit K}^{+}}$ ($5.5$ $\pm0.7$) $\times 10^{-3}$ Γ81 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}$ ($6.2$ $\pm0.5$) $\times 10^{-3}$ 1.1 Γ82 ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{+}}$ ($4.3$ $\pm0.9$) $\times 10^{-3}$ 1.1