CONSTRAINED FIT INFORMATION show precise values?

 An overall fit to 45 branching ratios uses 70 measurements and one constraint to determine 23 parameters. The overall fit has a $\chi {}^{2}$ = 48.7 for 48 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}$~$\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.

 x1 100 x2 100 x7 100 x14 100 x15 100 x23 100 x33 100 x35 100 x37 100 x46 100 x50 100 x52 100 x54 100 x57 100 x59 100 x62 100 x64 100 x66 100 x67 100 x70 100 x71 100 x72 100 x1 x2 x7 x14 x15 x23 x33 x35 x37 x46 x50 x52 x54 x57 x59 x62 x64 x66 x67 x70 x71 x72

 Mode Fraction (Γi / Γ) Scale factor Γ1 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ $0.0159$ $\pm0.0007$ 1.1 Γ2 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ $0.0626$ $\pm0.0029$ 1.4 Γ7 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$ $0.0196$ $\pm0.0012$ 1.0 Γ14 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $0.0160$ $\pm0.0011$ 1.1 Γ15 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ $0.0445$ $\pm0.0028$ 1.5 Γ23 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \eta}^{\,'}}$ ($4.9$ $\pm0.9$) $\times 10^{-4}$ Γ33 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}$ $0.0129$ $\pm0.0005$ 1.1 Γ35 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ $0.0702$ $\pm0.0035$ 1.1 Γ37 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ $0.0362$ $\pm0.0026$ 1.4 Γ46 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \eta}}$ $0.0185$ $\pm0.0011$ 1.1 Γ50 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($5.6$ $\pm1.1$) $\times 10^{-3}$ 1.9 Γ52 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{+}}$ $0.0127$ $\pm0.0006$ 1.1 Γ54 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{0}}$ $0.0125$ $\pm0.0009$ Γ57 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $0.0448$ $\pm0.0023$ 1.2 Γ59 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}$2 ${{\mathit \pi}^{+}}$ $0.0187$ $\pm0.0018$ Γ62 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ $0.0110$ $\pm0.0030$ Γ64 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \omega}}$ $0.0170$ $\pm0.0020$ Γ66 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($3.5$ $\pm0.4$) $\times 10^{-3}$ 1.0 Γ67 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \phi}}$ ($3.9$ $\pm0.6$) $\times 10^{-3}$ 1.1 Γ70 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{0}}{{\mathit K}^{+}}$ ($5.5$ $\pm0.7$) $\times 10^{-3}$ Γ71 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}$ ($6.2$ $\pm0.5$) $\times 10^{-3}$ 1.0 Γ72 ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{+}}$ ($4.3$ $\pm0.9$) $\times 10^{-3}$ 1.1