CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 41 branching ratios uses 62 measurements and one constraint to determine 21 parameters. The overall fit has a $\chi {}^{2}$ = 47.4 for 42 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x7    100
 x10     100
 x11      100
 x28       100
 x29        100
 x31         100
 x42          100
 x44           100
 x45            100
 x48             100
 x50              100
 x53               100
 x55                100
 x57                 100
 x58                  100
 x61                   100
 x62                    100
 x63                     100
   x1  x2  x7  x10  x11  x28  x29  x31  x42  x44  x45  x48  x50  x53  x55  x57  x58  x61  x62  x63
 
  Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$  $0.0159$ $\pm0.0008$ 1.1
Γ2  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.0628$ $\pm0.0032$ 1.4
Γ7  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$  $0.0197$ $\pm0.0013$ 1.1
Γ10  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0160$ $\pm0.0012$ 1.1
Γ11  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.0446$ $\pm0.0030$ 1.5
Γ28  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}$  $0.0130$ $\pm0.0007$ 1.1
Γ29  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.071$ $\pm0.004$ 1.1
Γ31  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$  $0.0364$ $\pm0.0029$ 1.4
Γ42  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$  $0.0057$ $\pm0.0011$ 1.9
Γ44  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{+}}$  $0.0129$ $\pm0.0007$ 1.1
Γ45  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{0}}$  $0.0125$ $\pm0.0010$ 
Γ48  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0450$ $\pm0.0025$ 1.3
Γ50  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}$2 ${{\mathit \pi}^{+}}$  $0.0187$ $\pm0.0018$ 
Γ53  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$  $0.0111$ $\pm0.0030$ 
Γ55  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \omega}}$  $0.0170$ $\pm0.0021$ 1.0
Γ57  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $0.0035$ $\pm0.0004$ 1.1
Γ58  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \phi}}$  $0.0039$ $\pm0.0006$ 1.1
Γ61  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{0}}{{\mathit K}^{+}}$  $0.0055$ $\pm0.0007$ 
Γ62  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}$  $0.0062$ $\pm0.0006$ 1.1
Γ63  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{+}}$  $0.0043$ $\pm0.0009$ 1.1