CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 41 branching ratios uses 62 measurements and one constraint to determine 21 parameters. The overall fit has a $\chi {}^{2}$ = 47.4 for 42 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x1  100
 x2   100
 x7    100
 x10     100
 x11      100
 x28       100
 x30        100
 x32         100
 x43          100
 x45           100
 x47            100
 x50             100
 x52              100
 x55               100
 x57                100
 x59                 100
 x60                  100
 x63                   100
 x64                    100
 x65                     100
   x1  x2  x7  x10  x11  x28  x30  x32  x43  x45  x47  x50  x52  x55  x57  x59  x60  x63  x64  x65
 
  Mode Fraction (Γi / Γ)Scale factor

Γ1  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$  $0.0159$ $\pm0.0008$ 1.1
Γ2  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  $0.0628$ $\pm0.0032$ 1.4
Γ7  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}$  $0.0197$ $\pm0.0013$ 1.1
Γ10  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0160$ $\pm0.0012$ 1.1
Γ11  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.0446$ $\pm0.0030$ 1.5
Γ28  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}$  $0.0130$ $\pm0.0007$ 1.1
Γ30  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$  $0.071$ $\pm0.004$ 1.1
Γ32  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$  $0.0364$ $\pm0.0029$ 1.4
Γ43  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$  $0.0057$ $\pm0.0011$ 1.9
Γ45  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{+}}$  $0.0129$ $\pm0.0007$ 1.1
Γ47  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{0}}$  $0.0125$ $\pm0.0010$ 
Γ50  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0450$ $\pm0.0025$ 1.3
Γ52  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{-}}$2 ${{\mathit \pi}^{+}}$  $0.0187$ $\pm0.0018$ 
Γ55  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{0}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$  $0.0111$ $\pm0.0030$ 
Γ57  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \omega}}$  $0.0170$ $\pm0.0021$ 1.0
Γ59  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  $0.0035$ $\pm0.0004$ 1.1
Γ60  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Sigma}^{+}}{{\mathit \phi}}$  $0.0039$ $\pm0.0006$ 1.1
Γ63  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{0}}{{\mathit K}^{+}}$  $0.0055$ $\pm0.0007$ 
Γ64  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{+}}$  $0.0062$ $\pm0.0006$ 1.1
Γ65  ${{\mathit \Lambda}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}{(1530)}^{0}}{{\mathit K}^{+}}$  $0.0043$ $\pm0.0009$ 1.1