CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 85 branching ratios uses 170 measurements and one constraint to determine 46 parameters. The overall fit has a $\chi {}^{2}$ = 135.0 for 125 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x5 100
 x9  100
 x10   100
 x14    100
 x16     100
 x20      100
 x23       100
 x27        100
 x28         100
 x30          100
 x36           100
 x38            100
 x41             100
 x43              100
 x45               100
 x48                100
 x49                 100
 x52                  100
 x56                   100
 x61                    100
 x70                     100
 x78                      100
 x85                       100
 x89                        100
 x97                         100
 x103                          100
 x106                           100
 x107                            100
 x119                             100
 x120                              100
 x126                               100
 x127                                100
 x150                                 100
 x151                                  100
 x152                                   100
 x154                                    100
 x156                                     100
 x160                                      100
 x170                                       100
 x173                                        100
 x178                                         100
 x179                                          100
 x180                                           100
 x182                                            100
 x185                                             100
   x5  x9  x10  x14  x16  x20  x23  x27  x28  x30  x36  x38  x41  x43  x45  x48  x49  x52  x56  x61  x70  x78  x85  x89  x97  x103  x106  x107  x119  x120  x126  x127  x150  x151  x152  x154  x156  x160  x170  x173  x178  x179  x180  x182  x185
 
    Mode Fraction (Γi / Γ)Scale factor

Γ5  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{{e}}}}{{\mathit \nu}_{{{\tau}}}}$ ($17.82$ $\pm0.04$) $ \times 10^{-2}$ 
Γ9  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($10.82$ $\pm0.05$) $ \times 10^{-2}$ 
Γ10  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($6.96$ $\pm0.10$) $ \times 10^{-3}$ 
Γ14  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($25.49$ $\pm0.09$) $ \times 10^{-2}$ 
Γ16  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($4.33$ $\pm0.15$) $ \times 10^{-3}$ 
Γ20  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($9.26$ $\pm0.10$) $ \times 10^{-2}$ 
Γ23  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($6.5$ $\pm2.2$) $ \times 10^{-4}$ 
Γ27  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}$3 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($1.04$ $\pm0.07$) $ \times 10^{-2}$ 
Γ28  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$3 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \eta}}$) ($4.8$ $\pm2.1$) $ \times 10^{-4}$ 
Γ30  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit h}^{-}}$4 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}},{{\mathit \eta}}$) ($1.1$ $\pm0.4$) $ \times 10^{-3}$ 
Γ36  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($8.38$ $\pm0.14$) $ \times 10^{-3}$ 
Γ38  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($1.486$ $\pm0.034$) $ \times 10^{-3}$ 
Γ41  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($3.82$ $\pm0.13$) $ \times 10^{-3}$ 
Γ43  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($1.50$ $\pm0.07$) $ \times 10^{-3}$ 
Γ45  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($2.6$ $\pm2.3$) $ \times 10^{-4}$ 
Γ48  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_S^0}$ ${{\mathit \nu}_{{{\tau}}}}$ ($2.35$ $\pm0.06$) $ \times 10^{-4}$ 
Γ49  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ ${{\mathit \nu}_{{{\tau}}}}$ ($1.08$ $\pm0.24$) $ \times 10^{-3}$ 
Γ52  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($1.82$ $\pm0.21$) $ \times 10^{-5}$ 
Γ56  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit K}_S^0}$ ${{\mathit K}_L^0}$ ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($3.2$ $\pm1.2$) $ \times 10^{-4}$ 
Γ61  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit h}^{+}}{{\mathit h}^{-}}{{\mathit h}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($2.5$ $\pm2.0$) $ \times 10^{-4}$ 
Γ70  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}}$) ($8.99$ $\pm0.05$) $ \times 10^{-2}$ 
Γ78  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}}$) ($2.74$ $\pm0.07$) $ \times 10^{-2}$ 
Γ85  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit h}^{-}}{{\mathit h}^{-}}{{\mathit h}^{+}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}},{{\mathit \eta}}$) ($1.0$ $\pm0.4$) $ \times 10^{-3}$ 
Γ89  ${{\mathit \tau}^{-}}$ $\rightarrow$ 2 ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \eta}}$, ${{\mathit \omega}}$, ${{\mathit f}_{{{1}}}{(1285)}}$)  ($1.4$ $\pm2.7$) $ \times 10^{-5}$ 
Γ97  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}}$) ($2.93$ $\pm0.07$) $ \times 10^{-3}$ 
Γ103  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}},{{\mathit \omega}},{{\mathit \eta}}$) ($3.9$ $\pm1.4$) $ \times 10^{-4}$ 
Γ106  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($1.435$ $\pm0.027$) $ \times 10^{-3}$ 
Γ107  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($6.1$ $\pm1.8$) $ \times 10^{-5}$ 
Γ119  ${{\mathit \tau}^{-}}$ $\rightarrow$ 3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \omega}}$, ${{\mathit f}_{{{1}}}{(1285)}}$) ($7.75$ $\pm0.30$) $ \times 10^{-4}$ 
Γ120  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($6$ $\pm12$) $ \times 10^{-7}$ 
Γ126  ${{\mathit \tau}^{-}}$ $\rightarrow$ 3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$, ${{\mathit \eta}}$, ${{\mathit \omega}}$, ${{\mathit f}_{{{1}}}{(1285)}}$) ($3.8$ $\pm0.9$) $ \times 10^{-5}$ 
Γ127  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($1.1$ $\pm0.6$) $ \times 10^{-6}$ 
Γ150  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($1.39$ $\pm0.07$) $ \times 10^{-3}$ 
Γ151  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($1.9$ $\pm0.4$) $ \times 10^{-4}$ 
Γ152  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit K}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($1.55$ $\pm0.08$) $ \times 10^{-4}$ 
Γ154  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit K}^{-}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($4.8$ $\pm1.2$) $ \times 10^{-5}$ 
Γ156  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\overline{\mathit K}}^{0}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($9.4$ $\pm1.5$) $ \times 10^{-5}$ 
Γ160  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \eta}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($2.20$ $\pm0.13$) $ \times 10^{-4}$ 
Γ170  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit K}^{-}}{{\mathit \nu}_{{{\tau}}}}$ ($4.4$ $\pm1.6$) $ \times 10^{-5}$ 
Γ173  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit f}_{{{1}}}{(1285)}}{{\mathit \pi}^{-}}{{\mathit \nu}_{{{\tau}}}}$ $\rightarrow$ 3 ${{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \nu}_{{{\tau}}}}$ ($5.2$ $\pm0.4$) $ \times 10^{-5}$ 
Γ178  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \omega}}{{\mathit \nu}_{{{\tau}}}}$ ($1.95$ $\pm0.06$) $ \times 10^{-2}$ 
Γ179  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \omega}}{{\mathit \nu}_{{{\tau}}}}$ ($4.1$ $\pm0.9$) $ \times 10^{-4}$ 
Γ180  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit h}^{-}}{{\mathit \omega}}{{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($4.1$ $\pm0.4$) $ \times 10^{-3}$ 
Γ182  ${{\mathit \tau}^{-}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \omega}}$2 ${{\mathit \pi}^{0}}{{\mathit \nu}_{{{\tau}}}}$ ($7.2$ $\pm1.6$) $ \times 10^{-5}$ 
Γ185  ${{\mathit \tau}^{-}}$ $\rightarrow$ 2 ${{\mathit \pi}^{-}}{{\mathit \pi}^{+}}{{\mathit \omega}}{{\mathit \nu}_{{{\tau}}}}$ (ex.${{\mathit K}^{0}}$) ($8.4$ $\pm0.6$) $ \times 10^{-5}$