CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 10 branching ratios uses 12 measurements to determine 6 parameters. The overall fit has a $\chi {}^{2}$ = 10.8 for 6 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x33 100
 x34  100
 x41   100
 x56    100
 x64     100
 x65      100
   x33  x34  x41  x56  x64  x65
 
    Mode Fraction (Γi / Γ)Scale factor

Γ33 ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$ ($4.9$ $\pm0.4$) $ \times 10^{-3}$ 1.2
Γ34 ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit K}^{-}}$ ($3.56$ $\pm0.28$) $ \times 10^{-4}$ 1.2
Γ41 ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ ($7.6$ $\pm1.1$) $ \times 10^{-3}$ 1.1
Γ56 ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{{\mathit \ell}}}}}}$ ($6.2$ ${}^{+1.4}_{-1.3}$) $ \times 10^{-2}$ 
Γ64 ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \pi}^{-}}$ ($4.6$ $\pm0.8$) $ \times 10^{-6}$ 
Γ65 ${{\mathit \Lambda}_{{{b}}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}$ ($5.5$ $\pm1.0$) $ \times 10^{-6}$