CONSTRAINED FIT INFORMATION show precise values?

 An overall fit to 10 branching ratios uses 12 measurements and one constraint to determine 7 parameters. The overall fit has a $\chi {}^{2}$ = 10.8 for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}$~$\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.

 x32 100 x33 100 x37 100 x48 100 x56 100 x57 100 x32 x33 x37 x48 x56 x57

 Mode Fraction (Γi / Γ) Scale factor Γ32 ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{-}}$ ($4.9$ $\pm0.4$) $\times 10^{-3}$ 1.2 Γ33 ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit K}^{-}}$ ($3.56$ $\pm0.28$) $\times 10^{-4}$ 1.2 Γ37 ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$ ($7.6$ $\pm1.1$) $\times 10^{-3}$ 1.1 Γ48 ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ $0.062$ ${}^{+0.014}_{-0.013}$ Γ56 ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit \pi}^{-}}$ ($4.5$ $\pm0.8$) $\times 10^{-6}$ Γ57 ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit p}}{{\mathit K}^{-}}$ ($5.4$ $\pm1.0$) $\times 10^{-6}$