CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 36 branching ratios uses 93 measurements and one constraint to determine 23 parameters. The overall fit has a $\chi {}^{2}$ = 63.5 for 71 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$ , including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x7  100
 x8   100
 x35    100
 x47     100
 x73      100
 x114       100
 x124        100
 x200         100
 x202          100
 x249           100
 x254            100
 x260             100
 x266              100
 x272               100
 x306                100
 x340                 100
 x347                  100
 x361                   100
 x405                    100
 x436                     100
 x538                      100
 x543                       100
   x7  x8  x35  x47  x73  x114  x124  x200  x202  x249  x254  x260  x266  x272  x306  x340  x347  x361  x405  x436  x538  x543
 
  Mode Fraction (Γi / Γ)Scale factor

Γ7  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$  $0.0514$ $\pm0.0015$ 1.3
Γ8  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$  $0.0158$ $\pm0.0009$ 1.1
Γ35  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}$  $0.00251$ $\pm0.00008$ 
Γ47  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0060$ $\pm0.0006$ 1.0
Γ73  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{1}}{(2420)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($9.9$ ${}^{+2.0}_{-2.5}$) $ \times 10^{-5}$ 
Γ114  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{+}}{{\mathit \pi}^{-}}$  ($2.03$ $\pm0.18$) $ \times 10^{-5}$ 
Γ124  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}$  ($2.7$ $\pm0.5$) $ \times 10^{-5}$ 2.7
Γ200  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}$  ($8.91$ $\pm0.21$) $ \times 10^{-4}$ 
Γ202  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{0}}$  $0.00127$ $\pm0.00005$ 
Γ249  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$  ($5.8$ $\pm0.5$) $ \times 10^{-4}$ 
Γ254  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{*}{(892)}^{0}}$  ($5.9$ $\pm0.4$) $ \times 10^{-4}$ 1.0
Γ260  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{*}{(892)}^{0}}$  ($2.38$ $\pm0.19$) $ \times 10^{-4}$ 1.2
Γ266  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{*}{(892)}^{0}}$  ($4.9$ $\pm1.2$) $ \times 10^{-5}$ 1.1
Γ272  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.96$ $\pm0.05$) $ \times 10^{-5}$ 
Γ306  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($4.97$ $\pm0.18$) $ \times 10^{-5}$ 
Γ340  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  ($6.7$ $\pm0.5$) $ \times 10^{-6}$ 
Γ347  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  ($2.68$ $\pm0.11$) $ \times 10^{-5}$ 
Γ361  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \phi}}$  ($1.00$ $\pm0.05$) $ \times 10^{-5}$ 
Γ405  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($5.12$ $\pm0.19$) $ \times 10^{-6}$ 
Γ436  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$  ($9.6$ $\pm1.5$) $ \times 10^{-7}$ 
Γ538  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($3.39$ $\pm0.35$) $ \times 10^{-7}$ 1.1
Γ543  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($9.4$ $\pm0.5$) $ \times 10^{-7}$