CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 34 branching ratios uses 89 measurements and one constraint to determine 22 parameters. The overall fit has a $\chi {}^{2}$ = 63.6 for 68 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x7   100
 x34    100
 x46     100
 x72      100
 x123       100
 x199        100
 x201         100
 x248          100
 x253           100
 x259            100
 x265             100
 x271              100
 x305               100
 x339                100
 x346                 100
 x360                  100
 x404                   100
 x435                    100
 x537                     100
 x542                      100
   x6  x7  x34  x46  x72  x123  x199  x201  x248  x253  x259  x265  x271  x305  x339  x346  x360  x404  x435  x537  x542
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$  $0.0508$ $\pm0.0017$ 1.4
Γ7  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$  $0.0157$ $\pm0.0009$ 1.1
Γ34  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}$  $0.00252$ $\pm0.00013$ 1.1
Γ46  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0060$ $\pm0.0007$ 1.1
Γ72  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{1}}{(2420)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($9.9$ ${}^{+2.0}_{-2.5}$) $ \times 10^{-5}$ 
Γ123  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}$  ($2.7$ $\pm0.5$) $ \times 10^{-5}$ 2.7
Γ199  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}$  ($8.91$ $\pm0.21$) $ \times 10^{-4}$ 
Γ201  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{0}}$  $0.00127$ $\pm0.00005$ 
Γ248  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$  ($5.8$ $\pm0.5$) $ \times 10^{-4}$ 
Γ253  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{*}{(892)}^{0}}$  ($5.9$ $\pm0.4$) $ \times 10^{-4}$ 1.0
Γ259  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{*}{(892)}^{0}}$  ($2.38$ $\pm0.19$) $ \times 10^{-4}$ 1.2
Γ265  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{*}{(892)}^{0}}$  ($4.9$ $\pm1.2$) $ \times 10^{-5}$ 1.1
Γ271  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$  ($1.96$ $\pm0.05$) $ \times 10^{-5}$ 
Γ305  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($4.97$ $\pm0.18$) $ \times 10^{-5}$ 
Γ339  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$  ($6.7$ $\pm0.5$) $ \times 10^{-6}$ 
Γ346  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$  ($2.68$ $\pm0.11$) $ \times 10^{-5}$ 
Γ360  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \phi}}$  ($1.00$ $\pm0.05$) $ \times 10^{-5}$ 
Γ404  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  ($5.12$ $\pm0.19$) $ \times 10^{-6}$ 
Γ435  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$  ($9.6$ $\pm1.5$) $ \times 10^{-7}$ 
Γ537  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($3.39$ $\pm0.35$) $ \times 10^{-7}$ 1.1
Γ542  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($9.4$ $\pm0.5$) $ \times 10^{-7}$