CONSTRAINED FIT INFORMATION show precise values?

 An overall fit to 34 branching ratios uses 89 measurements and one constraint to determine 22 parameters. The overall fit has a $\chi {}^{2}$ = 63.6 for 68 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}$~$\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.

 x6 100 x7 100 x34 100 x46 100 x72 100 x123 100 x199 100 x201 100 x248 100 x253 100 x259 100 x265 100 x271 100 x305 100 x339 100 x346 100 x360 100 x404 100 x435 100 x537 100 x542 100 x6 x7 x34 x46 x72 x123 x199 x201 x248 x253 x259 x265 x271 x305 x339 x346 x360 x404 x435 x537 x542

 Mode Fraction (Γi / Γ) Scale factor Γ6 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ $0.0508$ $\pm0.0017$ 1.4 Γ7 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ $0.0157$ $\pm0.0009$ 1.1 Γ34 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}$ $0.00252$ $\pm0.00013$ 1.1 Γ46 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $0.0060$ $\pm0.0007$ 1.1 Γ72 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{1}}{(2420)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{1}}^{-}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($9.9$ ${}^{+2.0}_{-2.5}$) $\times 10^{-5}$ Γ123 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{s}}^{-}}{{\mathit K}^{+}}$ ($2.7$ $\pm0.5$) $\times 10^{-5}$ 2.7 Γ199 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}$ ($8.91$ $\pm0.21$) $\times 10^{-4}$ Γ201 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{0}}$ $0.00127$ $\pm0.00005$ Γ248 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$ ($5.8$ $\pm0.5$) $\times 10^{-4}$ Γ253 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{*}{(892)}^{0}}$ ($5.9$ $\pm0.4$) $\times 10^{-4}$ 1.0 Γ259 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c1}}}{{\mathit K}^{*}{(892)}^{0}}$ ($2.38$ $\pm0.19$) $\times 10^{-4}$ 1.2 Γ265 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{c2}}}{{\mathit K}^{*}{(892)}^{0}}$ ($4.9$ $\pm1.2$) $\times 10^{-5}$ 1.1 Γ271 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($1.96$ $\pm0.05$) $\times 10^{-5}$ Γ305 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.97$ $\pm0.18$) $\times 10^{-5}$ Γ339 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($6.7$ $\pm0.5$) $\times 10^{-6}$ Γ346 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.68$ $\pm0.11$) $\times 10^{-5}$ Γ360 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \phi}}$ ($1.00$ $\pm0.05$) $\times 10^{-5}$ Γ404 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.12$ $\pm0.19$) $\times 10^{-6}$ Γ435 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$ ($9.6$ $\pm1.5$) $\times 10^{-7}$ Γ537 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($3.39$ $\pm0.35$) $\times 10^{-7}$ 1.1 Γ542 ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($9.4$ $\pm0.5$) $\times 10^{-7}$