CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 36 branching ratios uses 95 measurements to determine 22 parameters. The overall fit has a $\chi {}^{2}$ = 72.1 for 73 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x7 100
 x10  100
 x38   100
 x50    100
 x76     100
 x125      100
 x135       100
 x214        100
 x216         100
 x264          100
 x270           100
 x276            100
 x282             100
 x288              100
 x322               100
 x356                100
 x363                 100
 x377                  100
 x423                   100
 x454                    100
 x560                     100
 x565                      100
   x7  x10  x38  x50  x76  x125  x135  x214  x216  x264  x270  x276  x282  x288  x322  x356  x363  x377  x423  x454  x560  x565
 
    Mode Fraction (Γi / Γ)Scale factor

Γ7  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ ($5.11$ $\pm0.14$) $ \times 10^{-2}$ 1.4
Γ10  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{*}{(2010)}^{-}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{{\tau}}}}$ ($1.45$ $\pm0.10$) $ \times 10^{-2}$ 1.3
Γ38  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}$ ($2.51$ $\pm0.08$) $ \times 10^{-3}$ 
Γ50  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($6.0$ $\pm0.6$) $ \times 10^{-3}$ 1.0
Γ76  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{1}}}{(2420)}^{-}}{{\mathit \pi}^{+}}$ , ${{\mathit D}_{{{1}}}^{-}}$ $\rightarrow$ ${{\mathit D}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($9.9$ ${}^{+2.0}_{-2.5}$) $ \times 10^{-5}$ 
Γ125  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{+}}{{\mathit \pi}^{-}}$ ($2.03$ $\pm0.18$) $ \times 10^{-5}$ 
Γ135  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit D}_{{{s}}}^{-}}{{\mathit K}^{+}}$ ($2.7$ $\pm0.5$) $ \times 10^{-5}$ 2.7
Γ214  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{0}}$ ($8.91$ $\pm0.21$) $ \times 10^{-4}$ 
Γ216  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{0}}$ ($1.27$ $\pm0.05$) $ \times 10^{-3}$ 
Γ264  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{0}}$ ($5.8$ $\pm0.5$) $ \times 10^{-4}$ 
Γ270  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{*}{(892)}^{0}}$ ($5.9$ $\pm0.4$) $ \times 10^{-4}$ 1.0
Γ276  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{{c1}}}}{{\mathit K}^{*}{(892)}^{0}}$ ($2.38$ $\pm0.19$) $ \times 10^{-4}$ 1.2
Γ282  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \chi}_{{{c2}}}}{{\mathit K}^{*}{(892)}^{0}}$ ($4.9$ $\pm1.2$) $ \times 10^{-5}$ 1.1
Γ288  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ ($2.00$ $\pm0.04$) $ \times 10^{-5}$ 
Γ322  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($4.97$ $\pm0.18$) $ \times 10^{-5}$ 
Γ356  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$ ($6.7$ $\pm0.5$) $ \times 10^{-6}$ 
Γ363  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit K}^{+}}{{\mathit K}^{-}}$ ($2.68$ $\pm0.11$) $ \times 10^{-5}$ 
Γ377  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \phi}}$ ($1.00$ $\pm0.05$) $ \times 10^{-5}$ 
Γ423  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.37$ $\pm0.20$) $ \times 10^{-6}$ 1.3
Γ454  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit \rho}^{0}}{{\mathit \rho}^{0}}$ ($9.6$ $\pm1.5$) $ \times 10^{-7}$ 
Γ560  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($3.39$ $\pm0.35$) $ \times 10^{-7}$ 1.1
Γ565  ${{\mathit B}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{0}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($9.4$ $\pm0.5$) $ \times 10^{-7}$