${{\mathit \Lambda}}$ BARYONS
($\mathit S$ = $-1$, $\mathit I$ = 0)
${{\mathit \Lambda}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$

${{\mathit \Lambda}{(2325)}}$

$I(J^P)$ = $0(3/2^{-})$ 
BACCARI 1977 finds this state with either $\mathit J{}^{P} = 3/2{}^{-}$ or ${}^{}3/2{}^{+}$ in a energy-dependent partial-wave analyses of ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \omega}}$ from 2070 to 2436 MeV. A subsequent semi-energy-independent analysis from threshold to 2436 MeV selects ${}^{}3/2{}^{-}$. DEBELLEFON 1978 (same group) also sees this state in an energy-dependent partial-wave analysis of ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\overline{\mathit K}}}{{\mathit N}}$ data, and finds $\mathit J{}^{P} = 3/2{}^{-}$ or ${}^{}3/2{}^{+}$. They again prefer $\mathit J{}^{P} = 3/2{}^{-}$, but only on the basis of model-dependent considerations.
${{\mathit \Lambda}{(2325)}}$ MASS   $\approx2325$ MeV 
${{\mathit \Lambda}{(2325)}}$ WIDTH
$\Gamma_{1}$ ${{\mathit N}}{{\overline{\mathit K}}}$   899
$\Gamma_{2}$ ${{\mathit \Lambda}}{{\mathit \omega}}$   664