CHARMED BARYONS
($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$,
${{\mathit \Xi}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Xi}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Omega}_{{{c}}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE   JSON PDGID:
B115

${{\mathit \Sigma}_{{{c}}}{(2520)}}$

$I(J^P)$ = $1(3/2^{+})$ 
Seen in the ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{\pm}}$ mass spectrum. The natural assignment is that this is the $\mathit J{}^{P} = 3/2{}^{+}$ excitation of the ${{\mathit \Sigma}_{{{c}}}{(2455)}}$, the charm counterpart of the ${{\mathit \Sigma}{(1385)}}$, but neither $\mathit J$ nor ${}^{P}$ has been measured.
${{\mathit \Sigma}_{{{c}}}{(2520)}}$ MASSES
${{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}$ MASS   $2518.41 \pm0.22$ MeV (S = 1.3)
 
${{\mathit \Sigma}_{{{c}}}{(2520)}^{+}}$ MASS   $2517.4 {}^{+0.7}_{-0.5}$ MeV 
 
${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}$ MASS   $2518.48 \pm0.21$ MeV (S = 1.2)
 
${{\mathit \Sigma}_{{{c}}}{(2520)}}$ MASS DIFFERENCES
${\mathit m}_{{{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}}–{\mathit m}_{{{\mathit \Lambda}_{{{c}}}^{+}}}$   $231.95 \pm0.18$ MeV (S = 1.8)
 
${\mathit m}_{{{\mathit \Sigma}_{{{c}}}{(2520)}^{+}}}–{\mathit m}_{{{\mathit \Lambda}_{{{c}}}^{+}}}$   $230.9 {}^{+0.7}_{-0.5}$ MeV 
 
${\mathit m}_{{{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}}–{\mathit m}_{{{\mathit \Lambda}_{{{c}}}^{+}}}$   $232.02 \pm0.15$ MeV (S = 1.4)
 
${\mathit m}_{{{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}}–{\mathit m}_{{{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}}$   $0.01 \pm0.15$ MeV 
 
${{\mathit \Sigma}_{{{c}}}{(2520)}}$ WIDTHS
${{\mathit \Sigma}_{{{c}}}{(2520)}^{++}}$ WIDTH   $14.78 {}^{+0.30}_{-0.40}$ MeV 
 
${{\mathit \Sigma}_{{{c}}}{(2520)}^{+}}$ WIDTH   $17.2 {}^{+4.0}_{-2.2}$ MeV 
 
${{\mathit \Sigma}_{{{c}}}{(2520)}^{0}}$ WIDTH   $15.3 {}^{+0.4}_{-0.5}$ MeV 
 
${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Sigma}_{{{c}}}}$ having this mass.
$\Gamma_{1}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}}$   $\approx{}100\%$ 179
 
FOOTNOTES