CHARMED BARYONS
($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$,
${{\mathit \Xi}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Xi}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Omega}_{{{c}}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE   JSON PDGID:
B119

${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$

$I(J^P)$ = $0(1/2^{-})$ 
The ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ mode is largely, and perhaps entirely, ${{\mathit \Sigma}_{{{c}}}}{{\mathit \pi}}$, which is just at threshold; since the ${{\mathit \Sigma}_{{{c}}}}$ has $\mathit J{}^{P} = 1/2{}^{+}$, the $\mathit J{}^{P}$ here is almost certainly ${}^{}1/2{}^{-}$. This result is in accord with the theoretical expectation that this is the charm counterpart of the strange ${{\mathit \Lambda}{(1405)}}$.
${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$ MASS $2592.25$ $\pm0.28$ MeV 
 
${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}-{{\mathit \Lambda}_{{{c}}}^{+}}$ MASS DIFFERENCE $305.79$ $\pm0.24$ MeV 
 
${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$ WIDTH $2.6$ $\pm0.6$ MeV 
 
${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}}{{\mathit \pi}}$ and its submode ${{\mathit \Sigma}_{{{c}}}{(2455)}}{{\mathit \pi}}$ $-$ the latter just barely $-$ are the only strong decays allowed to an excited ${{\mathit \Lambda}_{{{c}}}^{+}}$ having this mass; and the submode seems to dominate.
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ [1] 117
 
$\Gamma_{2}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{++}}{{\mathit \pi}^{-}}$ $(24 \pm7 ) \%$ 3
 
$\Gamma_{3}$ ${{\mathit \Sigma}_{{{c}}}{(2455)}^{0}}{{\mathit \pi}^{+}}$ $(24 \pm7 ) \%$ 3
 
$\Gamma_{4}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ 3-body $(18 \pm10 ) \%$ 117
 
$\Gamma_{5}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{0}}$ [2] not seen 258
 
$\Gamma_{6}$ ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \gamma}}$ not seen 288
 
[1] See AALTONEN 2011H, Fig. 8, for the calculated ratio of ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{0}}{{\mathit \pi}^{0}}$ and ${{\mathit \Lambda}_{{{c}}}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ partial widths as a function of the ${{\mathit \Lambda}_{{{c}}}{(2595)}^{+}}$ $−$ ${{\mathit \Lambda}_{{{c}}}^{+}}$ mass difference. At our value of the mass difference, the ratio is about$~$4.
[2] A test that the isospin is indeed 0, so that the particle is indeed a ${{\mathit \Lambda}_{{{c}}}^{+}}$.