BOTTOM BARYONS($\mathit B$ = $-1$) ${{\mathit \Lambda}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{+}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit b}}$, ${{\mathit \Sigma}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit b}}$${{\mathit \Xi}_{{{b}}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Xi}_{{{b}}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$, ${{\mathit \Omega}_{{{b}}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$

#### ${{\mathit \Sigma}_{{{b}}}}$

$I(J^P)$ = $1(1/2^{+})$ I, J, P need confirmation.
In the quark model ${{\mathit \Sigma}_{{{b}}}^{+}}$, ${{\mathit \Sigma}_{{{b}}}^{0}}$, ${{\mathit \Sigma}_{{{b}}}^{-}}$ are an isotriplet ($\mathit uub$, $\mathit udb$, $\mathit ddb$) state. The lowest ${{\mathit \Sigma}_{{{b}}}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I,~J$, or $\mathit P$ have actually been measured.
${{\mathit \Sigma}_{{{b}}}}$ MASS
 ${{\mathit \Sigma}_{{{b}}}^{+}}$ MASS $5810.56 \pm0.25$ MeV
 ${{\mathit \Sigma}_{{{b}}}^{-}}$ MASS $5815.64 \pm0.27$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{{b}}}^{+}}}–{\mathit m}_{{{\mathit \Sigma}_{{{b}}}^{-}}}$ $-5.06 \pm0.18$ MeV
${{\mathit \Sigma}_{{{b}}}}$ WIDTH
 ${{\mathit \Sigma}_{{{b}}}^{+}}$ WIDTH $5.0 \pm0.5$ MeV
 ${{\mathit \Sigma}_{{{b}}}^{-}}$ WIDTH $5.3 \pm0.5$ MeV
 $\Gamma_{1}$ ${{\mathit \Lambda}_{{{b}}}^{0}}{{\mathit \pi}}$ $dominant$ 133
 FOOTNOTES