BOTTOM BARYONS
($\mathit B$ = $-1$)
${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$
INSPIRE search

${{\mathit \Xi}_{{b}}^{-}}$

$I(J^P)$ = $1/2(1/2^{+})$ I, J, P need confirmation.
In the quark model, ${{\mathit \Xi}_{{b}}^{0}}$ and ${{\mathit \Xi}_{{b}}^{-}}$ are an isodoublet ($\mathit usb$, $\mathit dsb$) state; the lowest ${{\mathit \Xi}_{{b}}^{0}}$ and ${{\mathit \Xi}_{{b}}^{-}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I$, $\mathit J$, or ${}^{P}$ have actually been measured.
${{\mathit \Xi}_{{b}}^{-}}$ MASS
${{\mathit \Xi}_{{b}}^{-}}$ MASS   $5797.0 \pm0.6$ MeV (S = 1.7)
 
${\mathit m}_{{{\mathit \Xi}_{{b}}^{-}}}–{\mathit m}_{{{\mathit \Lambda}_{{b}}^{0}}}$   $177.46 \pm0.31$ MeV (S = 1.3)
 
${\mathit m}_{{{\mathit \Xi}_{{b}}^{-}}}–{\mathit m}_{{{\mathit \Xi}_{{b}}^{0}}}$   $5.9 \pm0.6$ MeV 
 
${{\mathit \Xi}_{{b}}^{-}}$ MEAN LIFE
${{\mathit \Xi}_{{b}}^{-}}$ MEAN LIFE   $(1.572 \pm0.040) \times 10^{-12}$ s 
 
MEAN LIFE RATIOS
${\mathit \tau}_{{{\mathit \Xi}_{{b}}^{-}}}$ $/$ ${\mathit \tau}_{{{\mathit \Lambda}_{{b}}^{0}}}$ mean life ratio   $1.089 \pm0.028$  
 
${\mathit \tau}_{{{\mathit \Xi}_{{b}}^{-}}}$ $/$ ${\mathit \tau}_{{{\mathit \Xi}_{{b}}^{0}}}$ mean life ratio   $1.08 \pm0.04$  
 
$\mathit P$ VIOLATION ASYMMETRY
$\mathit A_{P}({{\mathit \Xi}_{{b}}}$ ), ${{\mathit \Xi}_{{b}}^{-}}$ $−$ ${{\mathit \Xi}_{{b}}^{+}}$ production asymmetry   $-0.02 \pm0.04$  
 
CP VIOLATION in ${{\mathit \Xi}_{{b}}}$ deays
$\mathit A_{CP}$( ${{\mathit \Xi}_{{b}}^{-}}$ $\rightarrow$ ${{\mathit \Sigma}{(1385)}}{{\mathit K}^{-}}$ )   $-0.3 \pm0.8$  
 
$\mathit A_{CP}$( ${{\mathit \Xi}_{{b}}^{-}}$ $\rightarrow$ ${{\mathit \Lambda}{(1405)}}{{\mathit K}^{-}}$ )   $0.0 \pm0.4$  
 
$\mathit A_{CP}$( ${{\mathit \Xi}_{{b}}^{-}}$ $\rightarrow$ ${{\mathit \Lambda}{(1520)}}{{\mathit K}^{-}}$ )   $-0.05 \pm0.12$  
 
$\mathit A_{CP}$( ${{\mathit \Xi}_{{b}}^{-}}$ $\rightarrow$ ${{\mathit \Lambda}{(1670)}}{{\mathit K}^{-}}$ )   $0.03 \pm0.17$  
 
$\mathit A_{CP}$( ${{\mathit \Xi}_{{b}}^{-}}$ $\rightarrow$ ${{\mathit \Sigma}{(1775)}}{{\mathit K}^{-}}$ )   $-0.47 \pm0.30$  
 
$\mathit A_{CP}$( ${{\mathit \Xi}_{{b}}^{-}}$ $\rightarrow$ ${{\mathit \Sigma}{(1915)}}{{\mathit K}^{-}}$ )   $0.11 \pm0.34$  
 
$\Gamma_{1}$ ${{\mathit J / \psi}}{{\mathit \Xi}^{-}}$ ${\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Xi}_{{b}}^{-}}$ )  $(1.02^{+0.26}_{-0.21})\times 10^{-5}$ 1782
 
$\Gamma_{2}$ ${{\mathit J / \psi}}{{\mathit \Lambda}}{{\mathit K}^{-}}$ ${\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Xi}_{{b}}^{-}}$ )  $(2.5\pm{0.4})\times 10^{-6}$ 1631
 
$\Gamma_{3}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{-}}$ ${\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Xi}_{{b}}^{-}}$ )  $(3.7\pm{0.8})\times 10^{-8}$ 2731
 
$\Gamma_{4}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit K}^{-}}$  seen 2731
 
$\Gamma_{5}$ ${{\mathit p}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$  2813
 
$\Gamma_{6}$ ${{\mathit p}}{{\mathit K}^{-}}{{\mathit \pi}^{-}}$  seen 2783
 
$\Gamma_{7}$ ${{\mathit \Lambda}_{{b}}^{0}}{{\mathit \pi}^{-}}$ ${\times }$ B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit \Xi}_{{b}}^{-}}$ )/B(${{\mathit b}}$ $\rightarrow$ ${{\mathit \Lambda}_{{b}}^{0}}$ )  $(5.7\pm{2.0})\times 10^{-4}$ 99
 
$\Gamma_{8}$ ${{\mathit \Xi}_{{c}}^{0}}{{\mathit \pi}^{-}}$  seen 2367
 
$\Gamma_{9}$ ${{\mathit \Sigma}{(1385)}}{{\mathit K}^{-}}$  $(2.6\pm{2.3})\times 10^{-7}$ 2707
 
$\Gamma_{10}$ ${{\mathit \Lambda}{(1405)}}{{\mathit K}^{-}}$  $(1.9\pm{1.2})\times 10^{-7}$ 2702
 
$\Gamma_{11}$ ${{\mathit \Lambda}{(1520)}}{{\mathit K}^{-}}$  $(7.6\pm{3.2})\times 10^{-7}$ 2673
 
$\Gamma_{12}$ ${{\mathit \Lambda}{(1670)}}{{\mathit K}^{-}}$  $(4.5\pm{2.3})\times 10^{-7}$ 2629
 
$\Gamma_{13}$ ${{\mathit \Sigma}{(1775)}}{{\mathit K}^{-}}$  $(2.2\pm{1.5})\times 10^{-7}$ 2599
 
$\Gamma_{14}$ ${{\mathit \Sigma}{(1915)}}{{\mathit K}^{-}}$  $(2.6\pm{2.5})\times 10^{-7}$ 2553
 
FOOTNOTES