($\mathit B$ = $\mathit C$ = $\pm{}$1)
${{\mathit B}_{{c}}^{+}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit b}}}$, ${{\mathit B}_{{c}}^{-}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit b}}$,
similarly for ${{\mathit B}_{{c}}^{*}}$'s

${{\mathit B}_{{c}}^{+}}$

$I(J^P)$ = $0(0^{-})$ I, J, P need confirmation.
Quantum numbers shown are quark-model predictions.
${{\mathit B}_{{c}}^{+}}$ MASS   $6274.47 \pm0.32$ MeV 
${\mathit m}_{{{\mathit B}_{{c}}^{+}}}–{\mathit m}_{{{\mathit B}_{{s}}^{0}}}$   $907.8 \pm0.5$ MeV 
${{\mathit B}_{{c}}^{+}}$ MEAN LIFE   $(0.510 \pm0.009) \times 10^{-12}$ s 
POLARIZATION IN ${{\mathit B}_{{c}}^{+}}$ DECAY
$\Gamma _{L}/\Gamma $ in ${{\mathit B}_{{c}}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}}{{\mathit D}_{{s}}^{*+}}$   $0.34 \pm0.09$  
A$_{P}({{\mathit B}_{{c}}^{+}}$)   $-0.010 \pm0.010$  
The following quantities are not pure branching ratios; rather the fractions $\Gamma _{\mathit i}/\Gamma $ ${\times }$ B( ${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{c}}}$ ). ${{\mathit B}_{{c}}^{-}}$ modes are charge conjugates of the modes below.
$\Gamma_{1}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything   seen  
$\Gamma_{2}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{\mu}}}$   seen 2372
$\Gamma_{3}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$   seen 1932
$\Gamma_{4}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}$   seen 2370
$\Gamma_{5}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}$   seen 2341
$\Gamma_{6}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$   seen 2350
$\Gamma_{7}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$   2294
$\Gamma_{8}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit K}^{+}}$   2073
$\Gamma_{9}$ ${{\mathit J / \psi}{(1S)}}{{\mathit a}_{{1}}{(1260)}}$   not seen 2169
$\Gamma_{10}$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$   seen 2203
$\Gamma_{11}$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{-}}$   seen 2309
$\Gamma_{12}$ ${{\mathit \psi}{(2S)}}{{\mathit \pi}^{+}}$   seen 2051
$\Gamma_{13}$ ${{\mathit \psi}{(2S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{+}}$   2026
$\Gamma_{14}$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}$   1838
$\Gamma_{15}$ ${{\mathit J / \psi}{(1S)}}{{\mathit D}^{0}}{{\mathit K}^{+}}$   seen 1539
$\Gamma_{16}$ ${{\mathit J / \psi}{(1S)}}{{\mathit D}^{*}{(2007)}^{0}}{{\mathit K}^{+}}$   seen 1411
$\Gamma_{17}$ ${{\mathit J / \psi}{(1S)}}{{\mathit D}^{*}{(2010)}^{+}}{{\mathit K}^{*0}}$   seen 919
$\Gamma_{18}$ ${{\mathit J / \psi}{(1S)}}{{\mathit D}^{+}}{{\mathit K}^{*0}}$   seen 1122
$\Gamma_{19}$ ${{\mathit J / \psi}{(1S)}}{{\mathit D}_{{s}}^{+}}$   seen 1821
$\Gamma_{20}$ ${{\mathit J / \psi}{(1S)}}{{\mathit D}_{{s}}^{*+}}$   seen 1727
$\Gamma_{21}$ ${{\mathit J / \psi}{(1S)}}{{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}$   seen 1791
$\Gamma_{22}$ ${{\mathit \chi}_{{c0}}}{{\mathit \pi}^{+}}$   $(2.4^{+0.9}_{-0.8})\times 10^{-5}$ 2205
$\Gamma_{23}$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}$   not seen 2970
$\Gamma_{24}$ ${{\mathit D}^{0}}{{\mathit K}^{+}}$   seen 2837
$\Gamma_{25}$ ${{\mathit D}^{0}}{{\mathit \pi}^{+}}$   not seen 2858
$\Gamma_{26}$ ${{\mathit D}^{*0}}{{\mathit \pi}^{+}}$   not seen 2814
$\Gamma_{27}$ ${{\mathit D}^{*0}}{{\mathit K}^{+}}$   not seen 2792
$\Gamma_{28}$ ${{\mathit D}_{{s}}^{+}}{{\overline{\mathit D}}^{0}}$   $<7.2\times 10^{-4}$ CL=90% 2483
$\Gamma_{29}$ ${{\mathit D}_{{s}}^{+}}{{\mathit D}^{0}}$   $<3.0\times 10^{-4}$ CL=90% 2483
$\Gamma_{30}$ ${{\mathit D}^{+}}{{\overline{\mathit D}}^{0}}$   $<1.9\times 10^{-4}$ CL=90% 2521
$\Gamma_{31}$ ${{\mathit D}^{+}}{{\mathit D}^{0}}$   $<1.4\times 10^{-4}$ CL=90% 2521
$\Gamma_{32}$ ${{\mathit D}_{{s}}^{*+}}{{\overline{\mathit D}}^{0}}$   $<5.3\times 10^{-4}$ CL=90% 2425
$\Gamma_{33}$ ${{\mathit D}_{{s}}^{+}}{{\overline{\mathit D}}^{*}{(2007)}^{0}}$   $<4.6\times 10^{-4}$ CL=90% 2427
$\Gamma_{34}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}^{0}}$   $<9\times 10^{-4}$ CL=90% 2425
$\Gamma_{35}$ ${{\mathit D}_{{s}}^{+}}{{\mathit D}^{*}{(2007)}^{0}}$   $<6.6\times 10^{-4}$ CL=90% 2427
$\Gamma_{36}$ ${{\mathit D}^{*}{(2010)}^{+}}{{\overline{\mathit D}}^{0}}$   $<3.8\times 10^{-4}$ CL=90% 2467
$\Gamma_{37}$ ${{\mathit D}^{*}{(2010)}^{+}}{{\overline{\mathit D}}^{0}}$ , ${{\mathit D}^{*+}}$ $\rightarrow$ ${{\mathit D}^{+}}{{\mathit \pi}^{0}}$ / ${{\mathit \gamma}}$   not seen  
$\Gamma_{38}$ ${{\mathit D}^{+}}{{\overline{\mathit D}}^{*}{(2007)}^{0}}$   $<6.5\times 10^{-4}$ CL=90% 2466
$\Gamma_{39}$ ${{\mathit D}^{*}{(2007)}^{+}}{{\mathit D}^{0}}$   $<2.0\times 10^{-4}$ CL=90%  
$\Gamma_{40}$ ${{\mathit D}^{*}{(2010)}^{+}}{{\mathit D}^{0}}$ , ${{\mathit D}^{*+}}$ $\rightarrow$ ${{\mathit D}^{+}}{{\mathit \pi}^{0}}$ / ${{\mathit \gamma}}$   not seen 2467
$\Gamma_{41}$ ${{\mathit D}^{+}}{{\mathit D}^{*}{(2007)}^{0}}$   $<3.7\times 10^{-4}$ CL=90% 2466
$\Gamma_{42}$ ${{\mathit D}_{{s}}^{*+}}{{\overline{\mathit D}}^{*}{(2007)}^{0}}$   $<1.3\times 10^{-3}$ CL=90% 2366
$\Gamma_{43}$ ${{\mathit D}_{{s}}^{*+}}{{\mathit D}^{*}{(2007)}^{0}}$   $<1.3\times 10^{-3}$ CL=90% 2366
$\Gamma_{44}$ ${{\mathit D}^{*}{(2010)}^{+}}{{\overline{\mathit D}}^{*}{(2007)}^{0}}$   $<1.0\times 10^{-3}$ CL=90% 2410
$\Gamma_{45}$ ${{\mathit D}^{*}{(2010)}^{+}}{{\mathit D}^{*}{(2007)}^{0}}$   $<7.7\times 10^{-4}$ CL=90% 2410
$\Gamma_{46}$ ${{\mathit D}^{+}}{{\mathit K}^{*0}}$   not seen 2783
$\Gamma_{47}$ ${{\mathit D}^{+}}{{\overline{\mathit K}}^{*0}}$   not seen 2783
$\Gamma_{48}$ ${{\mathit D}_{{s}}^{+}}{{\mathit K}^{*0}}$   not seen 2751
$\Gamma_{49}$ ${{\mathit D}_{{s}}^{+}}{{\overline{\mathit K}}^{*0}}$   not seen 2751
$\Gamma_{50}$ ${{\mathit D}_{{s}}^{+}}{{\mathit \phi}}$   not seen 2727
$\Gamma_{51}$ ${{\mathit K}^{+}}{{\mathit K}^{0}}$   not seen 3098
$\Gamma_{52}$ ${{\mathit B}_{{s}}^{0}}{{\mathit \pi}^{+}}$ / B(${{\overline{\mathit b}}}$ $\rightarrow$ ${{\mathit B}_{{s}}}$ )   seen