${{\mathit \Delta}}$ BARYONS
($\mathit S$ = 0, $\mathit I$ = 3/2)
${{\mathit \Delta}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit u}}$, ${{\mathit \Delta}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$, ${{\mathit \Delta}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit d}}$
INSPIRE   JSON PDGID:
B011

${{\mathit \Delta}{(1905)}}$

$I(J^P)$ = $3/2(5/2^{+})$ 
Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).
Expand/Collapse All
▸  ${{\mathit \Delta}{(1905)}}$ POLE POSITION
▸  ${{\mathit \Delta}{(1905)}}$ ELASTIC POLE RESIDUE
▸  ${{\mathit \Delta}{(1905)}}$ INELASTIC POLE RESIDUE
${{\mathit \Delta}{(1905)}}$ BREIT-WIGNER MASS 1855 TO 1910 $(\approx 1880 )$ MeV 
 
${{\mathit \Delta}{(1905)}}$ BREIT-WIGNER WIDTH 270 TO 400 $(\approx 330 )$ MeV 
 
▸  ${{\mathit \Delta}{(1905)}}$ PHOTON DECAY AMPLITUDES AT THE POLE
▸  ${{\mathit \Delta}{(1905)}}$ BREIT-WIGNER PHOTON DECAY AMPLITUDES
The following branching fractions are our estimates, not fits or averages.
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit N}}{{\mathit \pi}}$ $(9 - 15) \%$ 698
 
$\Gamma_{2}$ ${{\mathit N}}{{\mathit \pi}}{{\mathit \pi}}$ >65 $\%$ 673
 
$\Gamma_{3}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ >48 $\%$ 524
 
$\Gamma_{4}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$ $(8 - 43) \%$ 524
 
$\Gamma_{5}$ ${{\mathit \Delta}{(1232)}}{{\mathit \pi}}$ , ${\mathit F}{\mathrm -wave}$ $(40 - 58) \%$ 524
 
$\Gamma_{6}$ ${{\mathit N}}{{\mathit \rho}}$ , $\mathit S$=3/2, ${\mathit P}{\mathrm -wave}$ $(17 - 35) \%$ 385
 
$\Gamma_{7}$ ${{\mathit N}{(1535)}}{{\mathit \pi}}$ < 1 $\%$ 293
 
$\Gamma_{8}$ ${{\mathit N}{(1680)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$ $(5 - 15) \%$ 133
 
$\Gamma_{9}$ ${{\mathit \Delta}{(1232)}}{{\mathit \eta}}$ $(2 - 6) \%$ 282
 
$\Gamma_{10}$ ${{\mathit N}}{{\mathit \gamma}}$ $(0.012 - 0.036) \%$ 706
 
$\Gamma_{11}$ ${{\mathit N}}{{\mathit \gamma}}$ , helicity=1/2 $(0.002 - 0.006) \%$ 706
 
$\Gamma_{12}$ ${{\mathit N}}{{\mathit \gamma}}$ , helicity=3/2 $(0.01 - 0.03) \%$ 706