${{\mathit \Xi}}$ BARYONS
($\mathit S$ = $-2$, $\mathit I$ = 1/2)
${{\mathit \Xi}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$, ${{\mathit \Xi}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$

${{\mathit \Xi}{(1530)}}$

$I(J^P)$ = $1/2(3/2^{+})$ 
This is the only ${{\mathit \Xi}}$ resonance whose properties are all reasonably well known. Assuming that the ${{\mathit \Lambda}_{{{c}}}^{+}}$ has $\mathit J{}^{P} = 1/2{}^{+}$, AUBERT 2008AK, in a study of ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit \pi}^{+}}{{\mathit K}^{+}}$, finds conclusively that the spin of the ${{\mathit \Xi}{(1530)}^{0}}$ is 3/2. In conjunction with SCHLEIN 1963B and BUTTON-SHAFER 1966, this proves also that the parity is $\text{+}$. We use only those determinations of the mass and width that are accompanied by some discussion of systematics and resolution.
${{\mathit \Xi}{(1530)}}$ POLE POSITIONS
${{\mathit \Xi}{(1530)}^{0}}$ REAL PART
${{\mathit \Xi}{(1530)}^{0}}$ IMAGINARY PART
${{\mathit \Xi}{(1530)}^{-}}$ REAL PART
${{\mathit \Xi}{(1530)}^{-}}$ IMAGINARY PART
${{\mathit \Xi}{(1530)}}$ MASSES
${{\mathit \Xi}{(1530)}^{0}}$ MASS   $1531.80 \pm0.32$ MeV (S = 1.3)
${{\mathit \Xi}{(1530)}^{-}}$ MASS   $1535.0 \pm0.6$ MeV 
${\mathit m}_{{{\mathit \Xi}{(1530)}^{-}}}–{\mathit m}_{{{\mathit \Xi}{(1530)}}}$   $3.2 \pm0.6$ MeV 
${{\mathit \Xi}{(1530)}}$ WIDTHS
${{\mathit \Xi}{(1530)}^{0}}$ WIDTH   $9.1 \pm0.5$ MeV 
${{\mathit \Xi}{(1530)}^{-}}$ WIDTH   $9.9 {}^{+1.7}_{-1.9}$ MeV 
$\Gamma_{1}$ ${{\mathit \Xi}}{{\mathit \pi}}$   100$\%$ 158
$\Gamma_{2}$ ${{\mathit \Xi}}{{\mathit \gamma}}$   $<3.7\%$ CL=90% 202