${{\mathit \Xi}}$ BARYONS
($\mathit S$ = $-2$, $\mathit I$ = 1/2)
${{\mathit \Xi}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$, ${{\mathit \Xi}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$
INSPIRE   JSON PDGID:
B049

${{\mathit \Xi}{(1530)}}$

$I(J^P)$ = $1/2(3/2^{+})$ 
This is the only ${{\mathit \Xi}}$ resonance whose properties are all reasonably well known. Assuming that the ${{\mathit \Lambda}_{{{c}}}^{+}}$ has $\mathit J{}^{P} = 1/2{}^{+}$, AUBERT 2008AK, in a study of ${{\mathit \Lambda}_{{{c}}}^{+}}$ $\rightarrow$ ${{\mathit \Xi}^{-}}{{\mathit \pi}^{+}}{{\mathit K}^{+}}$, finds conclusively that the spin of the ${{\mathit \Xi}{(1530)}^{0}}$ is 3/2. In conjunction with SCHLEIN 1963B and BUTTON-SHAFER 1966, this proves also that the parity is $\text{+}$. We use only those determinations of the mass and width that are accompanied by some discussion of systematics and resolution.
Expand/Collapse All
▸  ${{\mathit \Xi}{(1530)}}$ POLE POSITIONS
▸  ${{\mathit \Xi}{(1530)}}$ MASSES
${\mathit m}_{{{\mathit \Xi}{(1530)}^{-}}}-{\mathit m}_{{{\mathit \Xi}{(1530)}}}$ $2.9$ $\pm0.9$ MeV 
 
▸  ${{\mathit \Xi}{(1530)}}$ WIDTHS
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
$\Gamma_{1}$ ${{\mathit \Xi}}{{\mathit \pi}}$ $100$ $\%$ 158
 
$\Gamma_{2}$ ${{\mathit \Xi}}{{\mathit \gamma}}$ <3.7 $\%$ CL=90% 202