${{\mathit \Lambda}}$ BARYONS
($\mathit S$ = $-1$, $\mathit I$ = 0)
${{\mathit \Lambda}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$
INSPIRE   JSON PDGID:
B060

${{\mathit \Lambda}{(1890)}}$

$I(J^P)$ = $0(3/2^{+})$ 
For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters 111B 1 (1982).
${{\mathit \Lambda}{(1890)}}$ POLE POSITION
REAL PART   $1872 \pm5$ MeV 
 
$-2{\times }$IMAGINARY PART   $101 \pm10$ MeV 
 
${{\mathit \Lambda}{(1890)}}$ POLE RESIDUE
Normalized residue in ${{\mathit K}}$ ${{\mathit N}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit K}}{{\mathit N}}$   $0.30 \pm0.06$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Sigma}}{{\mathit \pi}}$   $0.14 \pm0.05$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \eta}}$
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Xi}}{{\mathit K}}$   $0.065 \pm0.020$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$   $0.11 \pm0.05$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ , ${\mathit F}{\mathrm -wave}$   $0.10 \pm0.04$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=1/2 , ${\mathit P}{\mathrm -wave}$   $0.03 \pm0.03$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=3/2 , ${\mathit P}{\mathrm -wave}$   $0.05 \pm0.03$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=3/2, ${\mathit F}{\mathrm -wave}$
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \omega}}$ , $\mathit S$=1/2 , ${\mathit P}{\mathrm -wave}$   $0.24 \pm0.06$  
 
Normalized residue in ${{\mathit N}}$ ${{\overline{\mathit K}}}$ $\rightarrow$ ${{\mathit \Lambda}{(1890)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \omega}}$ , $\mathit S$=3/2 , ${\mathit P}{\mathrm -wave}$   $0.15 \pm0.08$  
 
${{\mathit \Lambda}{(1890)}}$ MASS   $1870\text{ to }1910\text{ }(\approx1890) $ MeV 
 
${{\mathit \Lambda}{(1890)}}$ WIDTH   $80\text{ to }160\text{ }(\approx120) $ MeV 
 
$\Gamma_{1}$ ${{\mathit N}}{{\overline{\mathit K}}}$   0.24 to 0.36 599
 
$\Gamma_{2}$ ${{\mathit \Sigma}}{{\mathit \pi}}$   3$-10\%$ 560
 
$\Gamma_{3}$ ${{\mathit \Lambda}}{{\mathit \eta}}$   428
 
$\Gamma_{4}$ ${{\mathit \Xi}}{{\mathit K}}$   247
 
$\Gamma_{5}$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$   seen 423
 
$\Gamma_{6}$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ , ${\mathit P}{\mathrm -wave}$   $(6.0\pm{3.0})\%$ 423
 
$\Gamma_{7}$ ${{\mathit \Sigma}{(1385)}}{{\mathit \pi}}$ , ${\mathit F}{\mathrm -wave}$   $(4.0\pm{2.0})\%$ 423
 
$\Gamma_{8}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$   seen 236
 
$\Gamma_{9}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=1/2   236
 
$\Gamma_{10}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=1/2, ${\mathit P}{\mathrm -wave}$   236
 
$\Gamma_{11}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=3/2, ${\mathit P}{\mathrm -wave}$   236
 
$\Gamma_{12}$ ${{\mathit N}}{{\overline{\mathit K}}^{*}{(892)}}$ , $\mathit S$=3/2, ${\mathit F}{\mathrm -wave}$   236
 
$\Gamma_{13}$ ${{\mathit \Lambda}}{{\mathit \omega}}$   -1
 
FOOTNOTES