${{\mathit \Xi}}$ BARYONS
($\mathit S$ = $-2$, $\mathit I$ = 1/2)
${{\mathit \Xi}^{0}}$ = ${\mathit {\mathit u}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$, ${{\mathit \Xi}^{-}}$ = ${\mathit {\mathit d}}$ ${\mathit {\mathit s}}$ ${\mathit {\mathit s}}$
INSPIRE   JSON PDGID:
B068

${{\mathit \Xi}{(2030)}}$

$I(J^P)$ = $1/2({5\over~2}^{?})$ 
The evidence for this state has been much improved by HEMINGWAY 1977, who see an eight standard deviation enhancement in ${{\mathit \Sigma}}{{\overline{\mathit K}}}$ and a weaker coupling to ${{\mathit \Lambda}}{{\overline{\mathit K}}}$. ALITTI 1968 and HEMINGWAY 1977 observe no signals in the ${{\mathit \Xi}}{{\mathit \pi}}{{\mathit \pi}}$ (or ${{\mathit \Xi}{(1530)}}{{\mathit \pi}}$) channel, in contrast to DIBIANCA 1975. The decay (${{\mathit \Lambda}}/{{\mathit \Sigma}}){{\overline{\mathit K}}}{{\mathit \pi}}$ reported by BARTSCH 1969 is also not confirmed by HEMINGWAY 1977. A moments analysis of the HEMINGWAY 1977 data indicates at a level of three standard deviations that $\mathit J$ ${}\geq{}{}^{}5/2{}^{}$.
${{\mathit \Xi}{(2030)}}$ MASS   $2025 \pm5$ MeV 
 
${{\mathit \Xi}{(2030)}}$ WIDTH   $20 {}^{+15}_{-5}$ MeV 
 
$\Gamma_{1}$ ${{\mathit \Lambda}}{{\overline{\mathit K}}}$   $\sim{}20\%$ 585
 
$\Gamma_{2}$ ${{\mathit \Sigma}}{{\overline{\mathit K}}}$   $\sim{}80\%$ 529
 
$\Gamma_{3}$ ${{\mathit \Xi}}{{\mathit \pi}}$   $small$ 574
 
$\Gamma_{4}$ ${{\mathit \Xi}{(1530)}}{{\mathit \pi}}$   $small$ 416
 
$\Gamma_{5}$ ${{\mathit \Xi}}{{\mathit \pi}}{{\mathit \pi}}$ (not ${{\mathit \Xi}{(1530)}}{{\mathit \pi}}$)   $small$ 540
 
$\Gamma_{6}$ ${{\mathit \Lambda}}{{\overline{\mathit K}}}{{\mathit \pi}}$   $small$ 499
 
$\Gamma_{7}$ ${{\mathit \Sigma}}{{\overline{\mathit K}}}{{\mathit \pi}}$   $small$ 428
 
FOOTNOTES