${{\boldsymbol \Lambda}{(2325)}}$ $I(J^P)$ = $0(3/2^{-})$
BACCARI 1977 finds this state with either $\mathit J{}^{P} = 3/2{}^{-}$ or ${}^{}3/2{}^{+}$ in a energy-dependent partial-wave analyses of ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \omega}}$ from 2070 to 2436 MeV. A subsequent semi-energy-independent analysis from threshold to 2436 MeV selects ${}^{}3/2{}^{-}$.
DEBELLEFON 1978 (same group) also sees this state in an energy-dependent partial-wave analysis of ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\overline{\mathit K}}}{{\mathit N}}$ data, and finds $\mathit J{}^{P} = 3/2{}^{-}$ or ${}^{}3/2{}^{+}$. They again prefer $\mathit J{}^{P} = 3/2{}^{-}$, but only on the basis of model-dependent considerations.