CHARMED BARYONS
($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$, ${{\mathit \Sigma}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$,
${{\mathit \Xi}_{{{c}}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Xi}_{{{c}}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$, ${{\mathit \Omega}_{{{c}}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE   JSON PDGID:
B146

${{\mathit \Xi}_{{{c}}}{(2645)}}$

$I(J^P)$ = $1/2(3/2^{+})$ 
The natural assignment is that this is the $\mathit J{}^{P} = 3/2{}^{+}$ excitation of the ${{\mathit \Xi}_{{{c}}}}$ in the same SU(4) multiplet as the ${{\mathit \Delta}{(1232)}}$, but the quantum numbers have not been measured.
${{\mathit \Xi}_{{{c}}}{(2645)}}$ MASSES
${{\mathit \Xi}_{{{c}}}{(2645)}^{+}}$ MASS   $2645.10 \pm0.30$ MeV (S = 1.2)
 
${{\mathit \Xi}_{{{c}}}{(2645)}^{0}}$ MASS   $2646.16 \pm0.25$ MeV (S = 1.3)
 
${{\mathit \Xi}_{{{c}}}{(2645)}}–{{\mathit \Xi}_{{{c}}}}$ MASS DIFFERENCES
${\mathit m}_{{{\mathit \Xi}_{{{c}}}{(2645)}^{+}}}–{\mathit m}_{{{\mathit \Xi}_{{{c}}}^{0}}}$   $174.67 \pm0.09$ MeV 
 
${\mathit m}_{{{\mathit \Xi}_{{{c}}}{(2645)}^{0}}}–{\mathit m}_{{{\mathit \Xi}_{{{c}}}^{+}}}$   $178.45 \pm0.10$ MeV 
 
${{\mathit \Xi}_{{{c}}}{(2645)}^{+}}–{{\mathit \Xi}_{{{c}}}{(2645)}^{0}}$ MASS DIFFERENCE   $-1.06 \pm0.27$ MeV (S = 1.1)
 
${{\mathit \Xi}_{{{c}}}{(2645)}}$ WIDTHS
${{\mathit \Xi}_{{{c}}}{(2645)}^{+}}$ WIDTH   $2.14 \pm0.19$ MeV (S = 1.1)
 
${{\mathit \Xi}_{{{c}}}{(2645)}^{0}}$ WIDTH   $2.35 \pm0.22$ MeV 
 
${{\mathit \Xi}_{{{c}}}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Xi}_{{{c}}}}$ resonance having this mass.
$\Gamma_{1}$ ${{\mathit \Xi}_{{{c}}}^{0}}{{\mathit \pi}^{+}}$   seen 102
 
$\Gamma_{2}$ ${{\mathit \Xi}_{{{c}}}^{+}}{{\mathit \pi}^{-}}$   seen 106
 
FOOTNOTES