($\boldsymbol S$ = $\pm1$, $\boldsymbol C$ = $\boldsymbol B$ = 0)
${{\mathit K}^{+}}$ = ${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit s}}}$, ${{\mathit K}^{0}}$ = ${\mathit {\mathit d}}$ ${\mathit {\overline{\mathit s}}}$, ${{\overline{\mathit K}}^{0}}$ = ${\mathit {\overline{\mathit d}}}$ ${\mathit {\mathit s}}$, ${{\mathit K}^{-}}$ = ${\mathit {\overline{\mathit u}}}$ ${\mathit {\mathit s}}$, similarly for ${{\mathit K}^{*}}$'s
INSPIRE search

${{\boldsymbol K}_{{2}}^{*}{(1430)}}$ $I(J^P)$ = $1/2(2^{+})$ 

We consider that phase-shift analyses provide more reliable determinations of the mass and width.
${{\boldsymbol K}_{{2}}^{*}{(1430)}}$ MASS
CHARGED ONLY, WITH FINAL STATE ${{\mathit K}}{{\mathit \pi}}$   $1427.3 \pm1.5$ MeV (S = 1.3)
NEUTRAL ONLY   $1432.4 \pm1.3$ MeV 
${{\boldsymbol K}_{{2}}^{*}{(1430)}}$ WIDTH
CHARGED ONLY, WITH FINAL STATE ${{\mathit K}}{{\mathit \pi}}$   $100.0 \pm2.1$ MeV 
NEUTRAL ONLY   $109 \pm5$ MeV (S = 1.9)
$\Gamma_{1}$ ${{\mathit K}}{{\mathit \pi}}$  $(49.9\pm{1.2})\%$ 620
$\Gamma_{2}$ ${{\mathit K}^{*}{(892)}}{{\mathit \pi}}$  $(24.7\pm{1.5})\%$ 420
$\Gamma_{3}$ ${{\mathit K}^{*}{(892)}}{{\mathit \pi}}{{\mathit \pi}}$  $(13.4\pm{2.2})\%$ 373
$\Gamma_{4}$ ${{\mathit K}}{{\mathit \rho}}$  $(8.7\pm{0.8})\%$ S=1.2 320
$\Gamma_{5}$ ${{\mathit K}}{{\mathit \omega}}$  $(2.9\pm{0.8})\%$ 313
$\Gamma_{6}$ ${{\mathit K}^{+}}{{\mathit \gamma}}$  $(2.4\pm{0.5})\times 10^{-3}$ S=1.1 628
$\Gamma_{7}$ ${{\mathit K}}{{\mathit \eta}}$  $(1.5^{+3.4}_{-1.0})\times 10^{-3}$ S=1.3 488
$\Gamma_{8}$ ${{\mathit K}}{{\mathit \omega}}{{\mathit \pi}}$  $<7.2\times 10^{-4}$ CL=95%106
$\Gamma_{9}$ ${{\mathit K}^{0}}{{\mathit \gamma}}$  $<9\times 10^{-4}$ CL=90%627
    constrained fit information