${{\boldsymbol \Sigma}_{{b}}}$ $I(J^P)$ = $1(1/2^{+})$ I, J, P need confirmation.
In the quark model ${{\mathit \Sigma}_{{b}}^{+}}$, ${{\mathit \Sigma}_{{b}}^{0}}$, ${{\mathit \Sigma}_{{b}}^{-}}$ are an isotriplet ($\mathit uub$, $\mathit udb$, $\mathit ddb$) state. The lowest ${{\mathit \Sigma}_{{b}}}$ ought to have $\mathit J{}^{P} = 1/2{}^{+}$. None of $\mathit I,~J$, or $\mathit P$ have actually been measured.