CHARMED MESONS
($\mathit C$ = $\pm1$)
${{\mathit D}^{+}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit d}}}$, ${{\mathit D}^{0}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit u}}}$, ${{\overline{\mathit D}}^{0}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit u}}$, ${{\mathit D}^{-}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit d}}$, similarly for ${{\mathit D}^{*}}$'s
INSPIRE   JSON PDGID:
S032

${{\mathit D}^{0}}$

$I(J^P)$ = $1/2(0^{-})$ 
Expand/Collapse All
${{\mathit D}^{0}}$ MASS $1864.84$ $\pm0.05$ MeV 
 
${\mathit m}_{{{\mathit D}^{\pm}}}-{\mathit m}_{{{\mathit D}^{0}}}$ $4.76$ $\pm0.14$ MeV 
 
${{\mathit D}^{0}}$ MEAN LIFE ($4.103$ $\pm0.010$) $ \times 10^{-13}$ s 
 
$\vert{}{\mathit m}_{{{\mathit D}_{{{1}}}^{0}}}-{\mathit m}_{{{\mathit D}_{{{2}}}^{0}}}\vert{}$ = $x$ $\Gamma $ ($94$ $\pm11$) $ \times 10^{8}$ $\hbar{}$ s${}^{-1}$ 
 
($\Gamma _{{{\mathit D}_{{{1}}}^{0}}}$ $-$ $\Gamma _{{{\mathit D}_{{{2}}}^{0}}})/\Gamma $ = 2$\mathit y$ $0.0135$ $\pm0.0008$  (S = 1.5)
 
$\vert $q/p$\vert $ $0.99$ $\pm0.05$  
 
A$_{\Gamma }$ ($0.0089$ $\pm0.0113$) $ \times 10^{-2}$  
 
$\phi {}^{{{\mathit K}_S^0} {{\mathit \pi}} {{\mathit \pi}}}$ $0.02^{+0.04}_{-0.05}$  
 
cos $ \delta $ $0.990$ $\pm0.025$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ COHERENCE FACTOR $\mathit R_{{{\mathit K}} {{\mathit \pi}} {{\mathit \pi}^{0}}}$ $0.792$ $\pm0.033$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}} {{\mathit \pi}} {{\mathit \pi}^{0}}}$ $198$ $\pm10$ $^\circ{}$ 
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ COHERENCE FACTOR $\mathit R_{{{\mathit K}}3 {{\mathit \pi}}}$ $0.52^{+0.10}_{-0.09}$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}}3 {{\mathit \pi}}}$ $149^{+26}_{-16}$ $^\circ{}$ (S = 1.4)
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$, $\mathit R_{{{\mathit K}}3 {{\mathit \pi}}}$ (y cos $\delta {}^{{{\mathit K}}3 {{\mathit \pi}}}$ $−$ x sin$\delta {}^{{{\mathit K}}3 {{\mathit \pi}}}$) $-0.0030$ $\pm0.0007$ TeV${}^{-1}$ 
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ COHERENCE FACTOR R$_{{{\mathit K}_S^0} {{\mathit K}} {{\mathit \pi}}}$ $0.70$ $\pm0.08$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}_S^0} {{\mathit K}} {{\mathit \pi}}}$ $0$ $\pm16$ $^\circ{}$ 
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit K}}$ COHERENCE FACTOR R$_{{{\mathit K}^{*}} {{\mathit K}}}$ $0.94$ $\pm0.12$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit K}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}^{*}} {{\mathit K}}}$ $-17$ $\pm18$ $^\circ{}$ 
 
▸  ${{\mathit D}^{0}}$ $\mathit CP$-EVEN FRACTIONS
▸  ${{\mathit D}^{0}}$ $\mathit CP$-VIOLATING DECAY-RATE ASYMMETRIES
▸  ${{\mathit D}^{0}}$ $\mathit CP$-VIOLATING ASYMMETRY DIFFERENCES
▸  ${{\mathit D}^{0}}$ TESTS OF LOCAL $\mathit CP$-VIOLATION ($\mathit CPV$)
▸  $\mathit CP$ VIOLATING ASYMMETRIES OF $\mathit P$-ODD ($\mathit T$-ODD) MOMENTS
▸  ${{\mathit D}^{0}}$ $\mathit CPT$-VIOLATING DECAY-RATE ASYMMETRIES
▸  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{-}}$ ${{\mathit \rho}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ FORM FACTORS
▸  ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}$ / ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ FORM FACTORS
▸  Amplitude analyses
Most decay modes (other than the semileptonic modes) that involve a neutral ${{\mathit K}}$ meson are now given as ${{\mathit K}_S^0}$ modes, not as ${{\overline{\mathit K}}^{0}}$ modes. Nearly always it is a ${{\mathit K}_S^0}$ that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that 2$~\Gamma ({{\mathit K}_S^0}$ ) = $\Gamma ({{\overline{\mathit K}}^{0}}$).
Mode  
Fraction ($\Gamma_i$ / $\Gamma$) Scale Factor/
Conf. Level
P(MeV/c)  
▸  Topological modes
▸  Inclusive modes
▸  Semileptonic modes
▸  Hadronic modes with one ${{\overline{\mathit K}}}$
▸  Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.
▸  Hadronic modes with three ${{\mathit K}}$'s
▸  Pionic modes
▸  Hadronic modes with a ${{\mathit K}}{{\overline{\mathit K}}}$ pair
▸  Other ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit X}}$ modes. They include all decay modes of the ${{\mathit \phi}}$, ${{\mathit \eta}}$, and ${{\mathit \omega}}$.
▸  Radiative modes
▸  Doubly Cabibbo suppressed ($\mathit DC$) modes or $\Delta \mathit C$ = 2 forbidden via mixing ($\mathit C2M$) modes
▸  $\Delta \mathit C$ = 1 weak neutral current ($\mathit C1$) modes, Lepton Family number ($\mathit LF$) violating modes, Lepton ($\mathit L$) or Baryon ($\mathit B$) number violating modes
$\Gamma_{369}$ Unaccounted decay modes  
 
[1] In the 2010 $\mathit Review$, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
[2] See the Particle Listings for the (complicated) definition of this quantity.
[3] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
[4] This is the sum of our ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, ${{\mathit K}^{-}}$2 ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$, ${{\overline{\mathit K}}^{0}}$2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$, ${{\mathit K}^{+}}$2 ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$, 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$, 2 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$, ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, and ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$, branching fractions.
[5] This is the sum of our ${{\mathit K}^{-}}$3 ${{\mathit \pi}^{+}}$2 ${{\mathit \pi}^{-}}$ and 3 ${{\mathit \pi}^{+}}$3 ${{\mathit \pi}^{-}}$ branching fractions.
[6] The branching fractions for the ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$, ${{\mathit K}^{*}{(892)}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$, ${{\mathit \pi}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$, and ${{\mathit \rho}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$ modes add up to $6.17$ $\pm0.17$ $\%$.
[7] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
[8] This is a doubly Cabibbo-suppressed mode.
[9] Submodes of the ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}{{\mathit \pi}^{0}}$ mode with a ${{\mathit K}^{*}}$ and/or ${{\mathit \rho}}$ were studied by COFFMAN 1992B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters B667 1 (2008), for those results.
[10] This value is, however, in some conflict with an upper limit of $0.9\%$ (90$\%$ CL); see the Particle Listings below.
[11] This branching fraction includes all the decay modes of the resonance in the final state.
[12] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction.
[13] However, these upper limits are in serious disagreement with values obtained in another experiment.
[14] This limit assumes the average of B(${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit e}^{+}}{{\mathit \nu}_{{{e}}}}$) and B(${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \mu}^{+}}{{\mathit \nu}_{{{\mu}}}}$) for the B(${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$) value.
[15] This mode is not a useful test for a $\Delta \mathit C$=1 weak neutral current because both quarks must change flavor in this decay.
[16] The value is for the sum of the charge states or particle/antiparticle states indicated.
Constrained Fit information