CHARMED MESONS
($\mathit C$ = $\pm1$)
${{\mathit D}^{+}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit d}}}$, ${{\mathit D}^{0}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit u}}}$, ${{\overline{\mathit D}}^{0}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit u}}$, ${{\mathit D}^{-}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit d}}$, similarly for ${{\mathit D}^{*}}$'s
INSPIRE   JSON PDGID:
S032

${{\mathit D}^{0}}$

$I(J^P)$ = $1/2(0^{-})$ 
${{\mathit D}^{0}}$ MASS   $1864.84 \pm0.05$ MeV 
 
${\mathit m}_{{{\mathit D}^{\pm}}}–{\mathit m}_{{{\mathit D}^{0}}}$   $4.822 \pm0.015$ MeV 
 
${{\mathit D}^{0}}$ MEAN LIFE   $(4.103 \pm0.010) \times 10^{-13}$ s 
 
$\vert{}{\mathit m}_{{{\mathit D}_{{{1}}}^{0}}}–{\mathit m}_{{{\mathit D}_{{{2}}}^{0}}}\vert{}$ = $x$ $\Gamma $   $(99.7 \pm11.6) \times 10^{8}$ $\hbar{}$ s${}^{-1}$ 
 
($\Gamma _{{{\mathit D}_{{{1}}}^{0}}}$ $-$ $\Gamma _{{{\mathit D}_{{{2}}}^{0}}})/\Gamma $ = 2$\mathit y$   $0.01394 \pm0.00056$  
 
$\vert $q/p$\vert $   $0.995 \pm0.016$  
 
A$_{\Gamma }$   $0.000089 \pm0.000113$  
 
$\phi {}^{{{\mathit K}_S^0} {{\mathit \pi}} {{\mathit \pi}}}$   $0.02 {}^{+0.04}_{-0.05}$  
 
cos $ \delta $   $0.990 \pm0.025$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ COHERENCE FACTOR $\mathit R_{{{\mathit K}} {{\mathit \pi}} {{\mathit \pi}^{0}}}$   $0.792 \pm0.033$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}} {{\mathit \pi}} {{\mathit \pi}^{0}}}$   $198 \pm10$ $^\circ{}$ 
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ COHERENCE FACTOR $\mathit R_{{{\mathit K}}3 {{\mathit \pi}}}$   $0.52 {}^{+0.10}_{-0.09}$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}}3 {{\mathit \pi}}}$   $149 {}^{+26}_{-16}$ $^\circ{}$ (S = 1.4)
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$, $\mathit R_{{{\mathit K}}3 {{\mathit \pi}}}$ (y cos $\delta {}^{{{\mathit K}}3 {{\mathit \pi}}}$ $−$ x sin$\delta {}^{{{\mathit K}}3 {{\mathit \pi}}}$)   $-0.0030 \pm0.0007$ TeV${}^{-1}$ 
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ COHERENCE FACTOR R$_{{{\mathit K}_S^0} {{\mathit K}} {{\mathit \pi}}}$   $0.70 \pm0.08$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}_S^0} {{\mathit K}} {{\mathit \pi}}}$   $0 \pm16$ $^\circ{}$ 
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit K}}$ COHERENCE FACTOR R$_{{{\mathit K}^{*}} {{\mathit K}}}$   $0.94 \pm0.12$  
 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit K}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{{{\mathit K}^{*}} {{\mathit K}}}$   $-17 \pm18$ $^\circ{}$ 
 
${{\mathit D}^{0}}$ $\mathit CP$-VIOLATING ASYMMETRY DIFFERENCES
$\Delta \mathit A_{CP}$ = $\mathit A_{CP}({{\mathit K}^{+}}{{\mathit K}^{-}}$) $−$ $\mathit A_{CP}({{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$)   $-0.00154 \pm0.00029$  
 
${{\mathit D}^{0}}$ $\mathit CPT$-VIOLATING DECAY-RATE ASYMMETRIES
$\mathit A_{\mathit CPT}({{\mathit K}^{\mp}}{{\mathit \pi}^{\pm}}$) in ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$, ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$   $0.008 \pm0.008$  
 
Amplitude analyses
${{\mathit D}}$ $\rightarrow$ ${{\mathit K}}{{\mathit \pi}}{{\mathit \pi}}{{\mathit \pi}}$, ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}}{{\mathit K}}{{\mathit \pi}}{{\mathit \pi}}$ partial wave analyses
Most decay modes (other than the semileptonic modes) that involve a neutral ${{\mathit K}}$ meson are now given as ${{\mathit K}_S^0}$ modes, not as ${{\overline{\mathit K}}^{0}}$ modes. Nearly always it is a ${{\mathit K}_S^0}$ that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that 2$~\Gamma ({{\mathit K}_S^0}$ ) = $\Gamma ({{\overline{\mathit K}}^{0}}$).
$\Gamma_{356}$ Unaccounted decay modes    
 
FOOTNOTES
Constrained Fit information