CHARMED MESONS
($\boldsymbol C$ = $\pm1$)
${{\mathit D}^{+}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit d}}}$, ${{\mathit D}^{0}}$ = ${\mathit {\mathit c}}$ ${\mathit {\overline{\mathit u}}}$, ${{\overline{\mathit D}}^{0}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit u}}$, ${{\mathit D}^{-}}$ = ${\mathit {\overline{\mathit c}}}$ ${\mathit {\mathit d}}$, similarly for ${{\mathit D}^{*}}$'s
INSPIRE search

${{\boldsymbol D}^{0}}$ $I(J^P)$ = $1/2(0^{-})$ 

See related review:
${{\mathit D}^{0}}$ $-$ ${{\overline{\mathit D}}^{0}}$ Mixing
${{\mathit D}^{0}}$ MASS   $1864.84 \pm0.05$ MeV 
${\mathit m}_{{{\mathit D}^{\pm}}}–{\mathit m}_{{{\mathit D}^{0}}}$   $4.822 \pm0.015$ MeV 
${{\mathit D}^{0}}$ MEAN LIFE   $(4.101 \pm0.015) \times 10^{-13}$ s 
$\vert{}{\mathit m}_{{{\mathit D}_{{1}}^{0}}}–{\mathit m}_{{{\mathit D}_{{2}}^{0}}}\vert{}$ = $x$ $\Gamma $   $(95 {}^{+41}_{-44}) \times 10^{8}$ $\hbar{}$ s${}^{-1}$ 
($\Gamma _{{{\mathit D}_{{1}}^{0}}}$ $-$ $\Gamma _{{{\mathit D}_{{2}}^{0}}})/\Gamma $ = 2$\mathit y$   $0.0129 {}^{+0.0014}_{-0.0018}$  
$\vert $q/p$\vert $   $0.92 {}^{+0.12}_{-0.09}$  
A$_{\Gamma }$   $-0.000125 \pm0.000526$  
$\phi {}^{ {{\mathit K}_S^0} {{\mathit \pi}} {{\mathit \pi}} }$   $-0.09 {}^{+0.10}_{-0.13}$  
cos $ \delta $   $0.97 \pm0.11$  
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ COHERENCE FACTOR $\mathit R_{ {{\mathit K}} {{\mathit \pi}} {{\mathit \pi}^{0}} }$   $0.82 \pm0.06$  
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{ {{\mathit K}} {{\mathit \pi}} {{\mathit \pi}^{0}} }$   $199 \pm14$ $^\circ{}$ 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ COHERENCE FACTOR $\mathit R_{ {{\mathit K}}3 {{\mathit \pi}} }$   $0.53 {}^{+0.18}_{-0.21}$  
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{ {{\mathit K}}3 {{\mathit \pi}} }$   $125 {}^{+22}_{-14}$ $^\circ{}$ 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{-}}$2 ${{\mathit \pi}^{+}}$ , $\mathit R_{ {{\mathit K}}3 {{\mathit \pi}} }$ (y cos $\delta {}^{ {{\mathit K}}3 {{\mathit \pi}} }$ $−$ x sin$\delta {}^{ {{\mathit K}}3 {{\mathit \pi}} }$)   $-0.0030 \pm0.0007$ TeV${}^{-1}$ 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ COHERENCE FACTOR R$_{ {{\mathit K}_S^0} {{\mathit K}} {{\mathit \pi}} }$   $0.70 \pm0.08$  
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}_S^0}$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{ {{\mathit K}_S^0} {{\mathit K}} {{\mathit \pi}} }$   $0 \pm16$ $^\circ{}$ 
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit K}}$ COHERENCE FACTOR R$_{ {{\mathit K}^{*}} {{\mathit K}} }$   $0.94 \pm0.12$  
${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{*}}{{\mathit K}}$ AVERAGE RELATIVE STRONG PHASE $\delta {}^{ {{\mathit K}^{*}} {{\mathit K}} }$   $-17 \pm18$ $^\circ{}$ 
${{\boldsymbol D}^{0}}$ $\boldsymbol CP$-VIOLATING ASYMMETRY DIFFERENCES
$\Delta \mathit A_{CP}$ = $\mathit A_{CP}$( ${{\mathit K}^{+}}{{\mathit K}^{-}}$ ) $−$ $\mathit A_{CP}$( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ )   $-0.00154 \pm0.00029$  
${{\boldsymbol D}^{0}}$ $\boldsymbol CPT$-VIOLATING DECAY-RATE ASYMMETRIES
$\mathit A_{\mathit CPT}({{\mathit K}^{\mp}}{{\mathit \pi}^{\pm}}$) in ${{\mathit D}^{0}}$ $\rightarrow$ ${{\mathit K}^{-}}{{\mathit \pi}^{+}}$ , ${{\overline{\mathit D}}^{0}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \pi}^{-}}$   $0.008 \pm0.008$  
Amplitude analyses
${{\mathit D}}$ $\rightarrow$ ${{\mathit K}}{{\mathit \pi}}{{\mathit \pi}}{{\mathit \pi}}$ , ${{\mathit D}}$ $\rightarrow$ ${{\mathit K}}{{\mathit K}}{{\mathit \pi}}{{\mathit \pi}}$ partial wave analyses
Most decay modes (other than the semileptonic modes) that involve a neutral ${{\mathit K}}$ meson are now given as ${{\mathit K}_S^0}$ modes, not as ${{\overline{\mathit K}}^{0}}$ modes. Nearly always it is a ${{\mathit K}_S^0}$ that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that 2$~\Gamma ({{\mathit K}_S^0}$ ) = $\Gamma ({{\overline{\mathit K}}^{0}}$).
$\Gamma_{336}$ Unaccounted decay modes  $(35.0\pm{1.2})\%$ S=1.1 
    constrained fit information