($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\mathit \Omega}_{{c}}{(2770)}^{0}}$

$I(J^P)$ = $0(3/2^{+})$ 
The natural assignment is that this goes with the ${{\mathit \Sigma}_{{c}}{(2520)}}$ and ${{\mathit \Xi}_{{c}}{(2645)}}$ to complete the lowest mass $\mathit J{}^{P}$ = ${}^{}3/2{}^{+}$ SU(3) sextet, part of the SU(4) 20-plet that includes the ${{\mathit \Delta}{(1232)}}$. But $\mathit J$ and ${}^{P}$ have not been measured.
${{\mathit \Omega}_{{c}}{(2770)}^{0}}$ MASS   $2765.9 \pm2.0$ MeV (S = 1.2)
${{\mathit \Omega}_{{c}}{(2770)}^{0}}–{{\mathit \Omega}_{{c}}^{0}}$ MASS DIFFERENCE   $70.7 {}^{+0.8}_{-0.9}$ MeV 
The ${{\mathit \Omega}_{{c}}{(2770)}^{0}}-{{\mathit \Omega}_{{c}}^{0}}$ mass difference is too small for any strong decay to occur.
$\Gamma_{1}$ ${{\mathit \Omega}_{{c}}^{0}}{{\mathit \gamma}}$  presumably 100$\%$ 70