($\mathit C$ = $+1$)
${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,
${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$
INSPIRE search

${{\mathit \Xi}_{{c}}^{'+}}$

$I(J^P)$ = $1/2(1/2^{+})$ 
The ${{\mathit \Xi}_{{c}}^{'+}}$ and ${{\mathit \Xi}_{{c}}^{'0}}$ presumably complete the SU(3) sextet whose other members are the ${{\mathit \Sigma}_{{c}}^{++}}$, ${{\mathit \Sigma}_{{c}}^{+}}$, ${{\mathit \Sigma}_{{c}}^{0}}$, and ${{\mathit \Omega}_{{c}}^{0}}$: see Fig.$~$5 in the “Quark Model” review. The quantum numbers given above come from this presumption but have not been measured.
${{\mathit \Xi}_{{c}}^{'+}}$ MASS   $2578.2 \pm0.5$ MeV (S = 1.1)
${{\mathit \Xi}_{{c}}^{'+}}–{{\mathit \Xi}_{{c}}^{+}}$ MASS DIFFERENCE   $110.5 \pm0.4$ MeV 
${{\mathit \Xi}_{{c}}^{'+}}–{{\mathit \Xi}_{{c}}^{'0}}$ MASS DIFFERENCE   $-0.5 \pm0.6$ MeV 
The ${{\mathit \Xi}_{{c}}^{'+}}-{{\mathit \Xi}_{{c}}^{+}}$ mass difference is too small for any strong decay to occur.
$\Gamma_{1}$ ${{\mathit \Xi}_{{c}}^{+}}{{\mathit \gamma}}$  seen 108