($\mathit B$ = $-1$)
${{\mathit \Lambda}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{0}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Xi}_{{b}}^{-}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit b}}$ , ${{\mathit \Omega}_{{b}}^{-}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit b}}$

${{\mathit b}}$ -baryon ADMIXTURE (${{\mathit \Lambda}_{{b}}}$ , ${{\mathit \Xi}_{{b}}}$ , ${{\mathit \Omega}_{{b}}}$ )

${{\mathit b}}$ -baryon ADMIXTURE MEAN LIFE
These branching fractions are actually an average over weakly decaying ${{\mathit b}}$ -baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the ${{\mathit b}}$ -baryon production fraction B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon).
The branching fractions B( ${{\mathit b}}$ -baryon $\rightarrow$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) and B( ${{\mathit \Lambda}_{{b}}^{0}}$ $\rightarrow$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything) are not pure measurements because the underlying measured products of these with B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon) were used to determine B( ${{\mathit b}}$ $\rightarrow$ ${{\mathit b}}$ -baryon), as described in the note ``Production and Decay of ${{\mathit b}}$ -Flavored Hadrons.''
For inclusive branching fractions, $\mathit e.g.,$ ${{\mathit B}}$ $\rightarrow$ ${{\mathit D}^{\pm}}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.
$\Gamma_{1}$ ${{\mathit p}}{{\mathit \mu}^{-}}{{\overline{\mathit \nu}}}$ anything   $(5.8^{+2.3}_{-2.0})\%$  
$\Gamma_{2}$ ${{\mathit p}}{{\mathit \ell}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything   $(5.6\pm{1.2})\%$  
$\Gamma_{3}$ ${{\mathit p}}$ anything   $(70\pm{22})\%$  
$\Gamma_{4}$ ${{\mathit \Lambda}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything   $(3.8\pm{0.6})\%$  
$\Gamma_{5}$ ${{\mathit \Lambda}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ anything   $(3.2\pm{0.8})\%$  
$\Gamma_{6}$ ${{\mathit \Lambda}}$ anything   $(39\pm{7})\%$  
$\Gamma_{7}$ ${{\mathit \Xi}^{-}}{{\mathit \ell}^{-}}{{\overline{\mathit \nu}}_{{{{\mathit \ell}}}}}$ anything   $(4.6\pm{1.4})\times 10^{-3}$ S=1.2