${{\mathit \Upsilon}{(10860)}}$ MASS

INSPIRE   PDGID:
M092M
VALUE (MeV) DOCUMENT ID TECN  COMMENT
$\bf{ 10885.2 {}^{+2.6}_{-1.6}}$ OUR AVERAGE
$10885.3$ $\pm1.5$ ${}^{+2.2}_{-0.9}$ 1
MIZUK
2019
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$10884.7$ ${}^{+3.6}_{-3.4}$ ${}^{+8.9}_{-1.0}$ 2
MIZUK
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit h}_{{{b}}}{(1P,2P)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$10882$ $\pm1$ 3
DONG
2020A
${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit b}}{{\overline{\mathit b}}}$
$10881.8$ ${}^{+1.0}_{-1.1}$ $\pm1.2$ 4, 5
SANTEL
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$10891.1$ $\pm3.2$ ${}^{+1.2}_{-2.0}$ 6, 7
SANTEL
2016
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$10879$ $\pm3$ 8, 9
CHEN
2010
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$10888.4$ ${}^{+2.7}_{-2.6}$ $\pm1.2$ 10
CHEN
2010
BELL ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$
$10876$ $\pm2$ 8
AUBERT
2009E
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$10869$ $\pm2$ 11
AUBERT
2009E
BABR ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$10868$ $\pm6$ $\pm5$ 12
BESSON
1985
CLEO ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
$10845$ $\pm20$ 13
LOVELOCK
1985
CUSB ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ hadrons
1  From a simultaneous fit to the ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, $\mathit n$ = 1, 2, 3, cross sections at 28 energy points within $\sqrt {s }$ = $10.6 - 11.05$ GeV, including the initial-state radiation at ${{\mathit \Upsilon}{(10860)}}$.
2  From a simultaneous fit to the ${{\mathit h}_{{{b}}}{(nP)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, $\mathit n$ = 1, 2 cross sections at 22 energy points within $\sqrt {s }$ = $10.77 - 11.02$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with eight resonance parameters (a mass and width for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, a single relative phase, a single relative amplitude, and two overall normalization factors, one for each $\mathit n$). The systematic error estimate is dominated by possible interference with a small nonresonant continuum amplitude.
3  From a fit to the dressed cross sections of AUBERT 2009E by BaBar and SANTEL 2016 by Belle above 10.68 GeV with a coherent sum of a continuum amplitude and three Breit-Wigner functions with constant widths.
4  From a fit to the total hadronic cross sections measured at 60 energy points within $\sqrt {s }$ = $10.82 - 11.05$ GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with 1/$\sqrt {s }$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, one relative phase, and one decoherence coefficient).
5  Not including uncertain and potentially large systematic errors due to assumed continuum amplitude 1/$\sqrt {s }$ dependence and related interference contributions.
6  From a simultaneous fit to the ${{\mathit \Upsilon}{(nS)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$, $\mathit n$ = 1, 2, 3, cross sections at 25energy points within $\sqrt {s }$ = $10.6 - 11.05$ GeV to a pair of interfering Breit-Wigner amplitudesmodified by phase space factors, with fourteen resonance parameters (a mass, width, and threeamplitudes for each of ${{\mathit \Upsilon}{(10860)}}$ and ${{\mathit \Upsilon}{(11020)}}$, a single universal relativephase, and three decoherence coefficients, one for each $\mathit n$). Continuum contributions weremeasured (and therefore fixed) to be zero.
7  Superseded by MIZUK 2019.
8  In a model where a flat non-resonant ${{\mathit b}}{{\overline{\mathit b}}}$-continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.
9  The parameters of the ${{\mathit \Upsilon}{(11020)}}$ are fixed to those in AUBERT 2009E.
10  In a model where a flat nonresonant ${{\mathit \Upsilon}{(1S,2S,3S)}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ continuum interferes with a single Breit-Wigner resonance.
11  In a model where a non-resonant ${{\mathit b}}{{\overline{\mathit b}}}$-continuum represented by a threshold function at $\sqrt {s }=2{\mathit m}_{{{\mathit B}}}$ is incoherently added to a flat component interfering with two Breit-Wigner resonances. Not independent of other AUBERT 2009E results. Systematic uncertainties not estimated.
12  Assuming four Gaussians with radiative tails and a single step in $\mathit R$.
13  In a coupled-channel model with three resonances and a smooth step in $\mathit R$.
References