$\mathit f_{+}$ and $\mathit f_{−}$ are form factors for the vector matrix element. |
$\mathit f_{\mathit S}$ and $\mathit f_{\mathit T}$ refer to the scalar and tensor term. |
$\mathit f_{0}(\mathit t$) = $\mathit f_{+}(\mathit t$) + $\mathit f_{−}(\mathit t$) $\mathit t/({{\mathit m}^{2}}_{{{\mathit K}^{0}}}$ $−$ ${{\mathit m}^{2}}_{{{\mathit \pi}^{+}}}$). |
$\mathit t$ = momentum transfer to the ${{\mathit \pi}}$. |
$\lambda _{+}$ and $\lambda _{0}$ are the linear expansion coefficients of $\mathit f_{+}$ and $\mathit f_{0}$: |
$\mathit f_{+}(\mathit t$) = $\mathit f_{+}$(0) (1 + $\lambda _{+}\mathit t$ $/{{\mathit m}^{2}}_{{{\mathit \pi}^{+}}}$) |
For quadratic expansion |
$\mathit f_{+}(\mathit t$) = $\mathit f_{+}$(0) (1 + $\lambda $'$_{+}\mathit t$ $/{{\mathit m}^{2}}_{{{\mathit \pi}^{+}}}$ + ${\lambda ''_{+}\over 2}$ $\mathit t{}^{2}/\mathit m{}^{4}_{{{\mathit \pi}^{+}}}$ ) |
as used by KTeV. If there is a non-vanishing quadratic term, then $\lambda _{+}$ |
represents an average slope, which is then different from $\lambda $'$_{+}$. |
NA48 (${{\mathit K}_{{{e3}}}}$) and ISTRA quadratic expansion coefficients are converted with |
$\lambda $'$_{+}{}^{PDG}$ = $\lambda _{+}{}^{NA48}$ and $\lambda $''$_{+}{}^{PDG}$ = 2 $\lambda $'$_{+}{}^{NA48}$ |
$\lambda $'$_{+}{}^{PDG}$ = (${{\mathit m}_{{{\mathit \pi}^{+}}}\over {\mathit m}_{{{\mathit \pi}^{0}}}}){}^{2}$ $\lambda _{+}{}^{ISTRA}$ and |
$\lambda $''$_{+}{}^{PDG}$ = 2 (${{\mathit m}_{{{\mathit \pi}^{+}}}\over {\mathit m}_{{{\mathit \pi}^{0}}}}){}^{4}$ $\lambda $'$_{+}{}^{ISTRA}$ |
ISTRA linear expansion coefficients are converted with |
$\lambda _{+}{}^{PDG}$ = (${{\mathit m}_{{{\mathit \pi}^{+}}}\over {\mathit m}_{{{\mathit \pi}^{0}}}}){}^{2}$ $\lambda _{+}{}^{ISTRA}$ and $\lambda _{0}{}^{PDG}$ = (${{\mathit m}_{{{\mathit \pi}^{+}}}\over {\mathit m}_{{{\mathit \pi}^{0}}}}){}^{2}$ $\lambda _{0}{}^{ISTRA}$ |
The pole parametrization is |
${{\mathit f}_{{{+}}}}(\mathit t$) = ${{\mathit f}_{{{+}}}}$(0) (${{{\mathit M}_{{{V}}}^{2}}\over {{\mathit M}_{{{V}}}^{2}} − \mathit t }$ ) |
${{\mathit f}_{{{0}}}}(\mathit t$) = ${{\mathit f}_{{{0}}}}$(0) (${{{\mathit M}_{{{S}}}^{2}}\over {{\mathit M}_{{{S}}}^{2}} − \mathit t }$ ) |
where ${{\mathit M}_{{{V}}}}$ and ${{\mathit M}_{{{S}}}}$ are the vector and scalar pole masses. |
The dispersive parametrization is |
${{\mathit f}_{{{+}}}}(\mathit t$) = ${{\mathit f}_{{{+}}}}$(0) exp[ ${t\over m{}^{2}_{{{\mathit \pi}}} }$ (${{\mathit \Lambda}_{{{+}}}}$ + $\mathit H(\mathit t$)) ]; |
${{\mathit f}_{{{0}}}}(\mathit t$) = ${{\mathit f}_{{{+}}}}$(0) exp[ ${t\over m{}^{2}_{{{\mathit K}}} − m{}^{2}_{{{\mathit \pi}}} }$ (${\mathrm {ln}}[\mathit C$] $−$ $\mathit G(\mathit t$)) ], |
where ${{\mathit \Lambda}_{{{+}}}}$ is the slope parameter and ln[$\mathit C$ ] = ln[ ${{\mathit f}_{{{0}}}}$ ($\mathit m{}^{2}_{{{\mathit K}}}$ $−$ $\mathit m{}^{2}_{{{\mathit \pi}}}$ ) ] |
is the logarithm of the scalar form factor at the Callan-Treiman point. |
$\mathit H(t)$ and $\mathit G(t)$ are dispersive integrals. |
The following abbreviations are used: |
DP = Dalitz plot analysis. |
PI = ${{\mathit \pi}}$ spectrum analysis. |
MU = ${{\mathit \mu}}$ spectrum analysis. |
POL= ${{\mathit \mu}}$ polarization analysis. |
BR = ${{\mathit K}_{{{\mu3}}}^{0}}/{{\mathit K}_{{{e3}}}^{0}}$ branching ratio analysis. |
E = positron or electron spectrum analysis. |
RC = radiative corrections. |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Except where otherwise noted, content of the 2024 Review of Particle Physics is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. The publication of the Review of Particle Physics is supported by US DOE, MEXT (Japan), INFN (Italy) and CERN. Individual collaborators receive support for their PDG activities from their respective institutes or funding agencies. © 2024. See LBNL disclaimers.