Hidden Photons: Kinetic Mixing Parameter Limits

INSPIRE   JSON  (beta) PDGID:
S029HPH
Limits are on the kinetic mixing parameter $\chi $ which is defined by the Lagrangian $\mathit L$ = $\text{-}{1\over 4}{{\mathit F}}_{{{\mathit \mu}} {{\mathit \nu}}}{{\mathit F}}{}^{{{\mathit \mu}} {{\mathit \nu}}}$ $−{1\over 4}{{\mathit F}}{}^{'}_{{{\mathit \mu}} {{\mathit \nu}}}{{\mathit F}}{}^{'{{\mathit \mu}} {{\mathit \nu}}}$ $\text{-}{\chi \over 2}{{\mathit F}}_{{{\mathit \mu}} {{\mathit \nu}}}{{\mathit F}}{}^{'{{\mathit \mu}} {{\mathit \nu}}}$ + ${{{\mathit m}}{}^{2}_{{{\mathit \gamma}^{\,'}}}\over 2}{{\mathit A}}{}^{'}_{{{\mathit \mu}}}{{\mathit A}}{}^{'{{\mathit \mu}}}$, where ${{\mathit A}_{{{\mu}}}}$ and ${{\mathit A}_{{{\mu}}}^{\,'}}$ are the photon and hidden-photon fields with field strengths ${{\mathit F}}_{{{\mathit \mu}} {{\mathit \nu}}}$ and ${{\mathit F}}{}^{'}_{{{\mathit \mu}} {{\mathit \nu}}}$, respectively, and is the hidden-photon mass.
VALUE CL% DOCUMENT ID TECN  COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
$<3 \times 10^{-8}$ 90 1
AAD
2024AS
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.01 - 10$ GeV
$<3 \times 10^{-5}$ 90 2
ABRATENKO
2024A
MBNE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.01 - 0.2$ GeV
$<4 \times 10^{-6}$ 90 3
ABREU
2024
FASR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 50 MeV
$<0.5 \times 10^{-10}$ 95 4
ADACHI
2024C
DORR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $41 - 74$ $\mu $eV
$<3 \times 10^{-12}$ 90 5
AGOSTINI
2024A
GRDA ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $65 - 1021$ keV
$<4.35 \times 10^{-13}$ 90 6
AGRAWAL
2024
DM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 24.67 $\mu $eV
$<5 \times 10^{-6}$ 90 7
ANDREEV
2024A
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.001 - 1$ GeV
$<1.8 \times 10^{-3}$ 90 8
ANDREEV
2024E
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 \times 10^{-3} - 1$ GeV
$<8 \times 10^{-7}$ 95 9
ARAMBURO-GARC..
2024
CMB ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $3 \times 10^{-15} - 3 \times 10^{-12}$ eV
$<1.4 \times 10^{-15}$ 90 10
ARNQUIST
2024
MAJD ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 100$ keV
$<1.5 \times 10^{-16}$ 90 11
CERVANTES
2024
SRPH ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 5.35 $\mu $eV
$<5 \times 10^{-7}$ 90 12
CORTINA-GIL
2024A
NA62 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5 - 500$ MeV
$<3 \times 10^{-16}$ 90 13
DOLAN
2024
STAR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.5 - 16$ keV
$<3.7 \times 10^{-13}$ 90 14
HE
2024
DM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 29.5 $\mu $eV
$<1 \times 10^{-12}$ 90 15
KNIRCK
2024
BRED ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $44 - 52$ $\mu $eV
$<6 \times 10^{-15}$ 95 16
LEVINE
2024
DER ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.21 - 1.24$ $\mu $eV
$<1 \times 10^{-6}$ 95 17
LIU
2024
DM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 \times 10^{-2} - 1 \times 10^{4}$ eV
$<4.5 \times 10^{-8}$ 95 18
MCCARTHY
2024
CMB ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-13} - 10^{-11}$ eV
$<2.2 \times 10^{-16}$ 90 19
TANG
2024
SHNE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5.367 - 5.373$ $\mu $eV
$<3 \times 10^{-3}$ 95 20
YAN
2024A
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $3 \times 10^{-18} - 3 \times 10^{-14}$ eV
$<1 \times 10^{-3}$ 90 21
AAD
2023BO
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5 - 40$ GeV
$<1.3 \times 10^{-8}$ 90 22
AAD
2023I
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.017 - 15$ GeV
23
AAD
2023T
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 40 GeV
$<1 \times 10^{-16}$ 90 24
AALBERS
2023A
LZ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 17$ keV
$<1.6 \times 10^{-3}$ 90 25
ABLIKIM
2023AF
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 2.9$ GeV
26
ABUDINEN
2023B
BEL2 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $4 - 9.7$ GeV
$<1.61 \times 10^{-14}$ 90 27
ADHIKARI
2023
C100 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 215 eV
$<6 \times 10^{-14}$ 90 28
ADHIKARI
2023A
C100 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 1000$ keV
$<2.1 \times 10^{-3}$ 95 29
ADRIAN
2023
HPS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $19 - 81$ MeV
$<1.1 \times 10^{-16}$ 90 30
AGNES
2023A
DS50 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.03 - 20$ keV
$<2 \times 10^{-12}$ 95 31
AN
2023A
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $4.1 - 6.2$ $\mu $eV
$<5 \times 10^{-6}$ 90 32
ANDREEV
2023
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-3} - 1.5$ GeV
$<5.0 \times 10^{-14}$ 68 33
BAJJALI
2023
BRAS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $49.63 - 74.44$ $\mu $eV
$<2 \times 10^{-7}$ 90 34
CORTINA-GIL
2023C
NA62 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 700$ MeV
$<2.2 \times 10^{-3}$ 90 35
HAYRAPETYAN
2023G
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.1 - 7.9$ GeV
$<3 \times 10^{-11}$ 95 36
KOTAKA
2023
DORR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $74 - 110$ $\mu $eV
$<2 \times 10^{-15}$ 37
LI
2023I
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-3} - 10^{5}$ eV
$<7.9 \times 10^{-13}$ 95 38
RAMANATHAN
2023
QULP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $19.7 - 30.5$ $\mu $eV
$<1.6 \times 10^{-9}$ 95 39
ROMANENKO
2023
LSW ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.21 - 5.7$ $\mu $eV
40
XIA
2023
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $10^{-23}$eV
41
AAD
2022J
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 60$ GeV
42
AAD
2022S
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 10 GeV
$<2 \times 10^{-14}$ 90 43
APRILE
2022
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.9 keV
$<2 \times 10^{-15}$ 90 44
APRILE
2022
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.01 - 0.4$ keV
$<5 \times 10^{-17}$ 90 45
APRILE
2022B
XENT ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$= $1 - 39,44 - 140$ keV
$<0.01$ 90 46
BATTAGLIERI
2022
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $3 - 100$ MeV
($4.6$ ${}^{+0.5}_{-0.4}$) $ \times 10^{-15}$ 68 47
BOLTON
2022
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = ($8.4$ $\pm0.6$) $ \times 10^{-14}$ eV
$<1 \times 10^{-13}$ 90 48
CERVANTES
2022
ORPH ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $65.5 - 69.3$ $\mu $eV
$<1 \times 10^{-12}$ 90 49
CHILES
2022
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.7 - 0.8$ eV
$<8.7 \times 10^{-11}$ 95 50
HOCHBERG
2022
SNSP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.73 - 30$ eV
51
LEES
2022
BABR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 \times 10^{-3} - 3.16$ GeV
$<7.97 \times 10^{-9}$ 95 52
LU
2022
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $3 \times 10^{-5}$ eV
$<6.86 \times 10^{-11}$ 90 53
MANENTI
2022
MDHI ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.61 eV
$<0.03$ 95 54
THOMAS
2022
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 80$ GeV
55
TUMASYAN
2022AH
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $4 - 62.5$ GeV
56
TUMASYAN
2022N
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.6 - 49$ GeV
57
WU
2022A
PPTA ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $10^{-23}$eV
$<8 \times 10^{-6}$ 90 58
ANDREEV
2021
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 \times 10^{-3} - 1$ GeV
$<2.3 \times 10^{-4}$ 90 59
ANDREEV
2021A
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 0.35$ GeV
$<1.6 \times 10^{-4}$ 95 60
BI
2021
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.03 - 0.06$ eV
$<3 \times 10^{-5}$ 90 61
CAZZANIGA
2021
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 390$ MeV
$<1.68 \times 10^{-15}$ 90 62
DIXIT
2021
CNTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 24.86 $\mu $eV
$<2 \times 10^{-16}$ 90 63
GHOSH
2021
RVUE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 - 30$ $\mu $eV
$<1.8 \times 10^{-13}$ 64
GODFREY
2021
DER ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.2637 - 0.2648$ $\mu $eV
$<3 \times 10^{-12}$ 95 65
KOPYLOV
2021A
CNTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $9 - 40$ eV
$<0.02$ 95 66
KRIBS
2021
${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 10 GeV
67
SCHMIDT
2021
THEO ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 0.6 GeV
$<3 \times 10^{-8}$ 90 68
TSAI
2021
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.78 GeV
$<1 \times 10^{-4}$ 90 69
AAIJ
2020C
LHCB ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 214 MeV
70
AAIJ
2020C
LHCB ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $218 - 315$ MeV
71
ABLIKIM
2020AB
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.2 - 2.1$ GeV
$<4.1 \times 10^{-12}$ 90 72
AGOSTINI
2020
HPGE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 60 keV $-$ 1 MeV
$<3.3 \times 10^{-14}$ 90 73
AMARAL
2020
SCDM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.2 - 50$ eV
$<1.2 \times 10^{-14}$ 90 74
AN
2020
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 200 eV
$<6.72 \times 10^{-13}$ 95 75
ANDRIANAVALOM..
2020
FUNK ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.95 - 8.55$ eV
$<1 \times 10^{-16}$ 90 76
APRILE
2020
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 200$ keV
$<9 \times 10^{-16}$ 90 77
ARALIS
2020
SCDM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.04 - 500$ keV
$<3 \times 10^{-5}$ 90 78
ARGUELLES
2020
THEO ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.01 GeV
$<7 \times 10^{-14}$ 90 79
ARNAUD
2020
EDEL ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 40$ eV
$<8.2 \times 10^{-5}$ 90 80
BANERJEE
2020
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 24$ MeV
$<7 \times 10^{-15}$ 90 81
BARAK
2020
SENS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.2 - 12.8$ eV
82
KRASNIKOV
2020
RVUE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 16.7 MeV
$<1.4 \times 10^{-14}$ 90 83
SHE
2020
CDEX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 300$ eV
$<1.3 \times 10^{-15}$ 90 84
SHE
2020
CDEX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 4$ keV
$<1 \times 10^{-3}$ 90 85
SIRUNYAN
2020AQ
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $11.5 - 75$ GeV, $110 - 200$ GeV
$<4.3 \times 10^{-10}$ 95 86
TOMITA
2020
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $115.79 - 115.85$ $\mu $eV
$<9 \times 10^{-16}$ 90 87
WANG
2020A
CDEX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.185 - 10$ keV
88
AABOUD
2019G
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $20 - 60$ GeV
$<6 \times 10^{-3}$ 90 89
ABLIKIM
2019A
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.01 - 2.4$ GeV
$<3.4 \times 10^{-3}$ 90 90
ABLIKIM
2019H
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 2.1$ GeV
$<8 \times 10^{-15}$ 90 91
AGUILAR-AREVA..
2019A
DAMC ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.2 - 30$ eV
$<9 \times 10^{-17}$ 90 92
APRILE
2019D
XE1T ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.186 - 5$ keV
$<7.5 \times 10^{-6}$ 90 93
BANERJEE
2019
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 200$ MeV
$<2 \times 10^{-11}$ 94
BHOONAH
2019
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-22} - 10^{-10}$ eV
$<5 \times 10^{-12}$ 95 95
BRUN
2019
SHUK ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $20.8 - 28.3$ $\mu $eV
$<4.4 \times 10^{-4}$ 90 96
CORTINA-GIL
2019
NA62 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $60 - 110$ MeV
$<3 \times 10^{-5}$ 95 97
DANILOV
2019
TEXO ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 20 eV - 1 MeV
$<6 \times 10^{-9}$ 95 98
HOCHBERG
2019
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.8 - 4$ eV
$<1 \times 10^{-11}$ 95 99
KOPYLOV
2019
CNTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $9 - 40$ eV
$<1.5 \times 10^{-9}$ 100
KOVETZ
2019
COSM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-23} - 10^{-13}$ eV
$<3 \times 10^{-14}$ 95 101
NGUYEN
2019
WDMX ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 6 neV $-$ 2.07 $\mu $eV
$<4.5 \times 10^{-14}$ 90 102
ABE
2018F
XMAS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $40 - 120$ keV
$<2.5 \times 10^{-3}$ 95 103
ADRIAN
2018
HPS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $19 - 81$ MeV
$<4.4 \times 10^{-4}$ 90 104
ANASTASI
2018B
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $519 - 987$ MeV
$<4 \times 10^{-15}$ 90 105
ARMENGAUD
2018
EDE3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.8 - 500$ keV
106
BANERJEE
2018
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 23$ MeV
$<1.8 \times 10^{-5}$ 90 107
BANERJEE
2018A
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 100$ MeV
$<1 \times 10^{-8}$ 90 108
KNIRCK
2018
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.67 - 0.92$ meV
$<3.1 \times 10^{-14}$ 90 109
ABGRALL
2017
HPGE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 11.8 keV
$<6 \times 10^{-4}$ 90 110
ABLIKIM
2017AA
BES3 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 3.4$ GeV
$<7 \times 10^{-15}$ 90 111
ANGLOHER
2017
CRES ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.3 - 0.7$ keV
$<1.2 \times 10^{-4}$ 90 112
BANERJEE
2017
NA64 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.002 - 0.4$ GeV
$<2 \times 10^{-11}$ 113
CHANG
2017
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 15 MeV
$<4.5 \times 10^{-3}$ 90 114
DUBININA
2017
EMUL ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.1 - 24$ MeV
$<4 \times 10^{-4}$ 90 115
LEES
2017E
BABR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 4.7 GeV
116
AAD
2016AG
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 2$ GeV
$<4.4 \times 10^{-4}$ 90 117
ANASTASI
2016
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $527 - 987$ MeV
$<1.7 \times 10^{-6}$ 95 118
KHACHATRYAN
2016
CMS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 GeV
$<0.04$ 95 119
AAD
2015CD
ATLS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $15 - 55$ GeV
$<1.4 \times 10^{-3}$ 90 120
ADARE
2015
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $30 - 90$ MeV
121
AN
2015A
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12 eV - 40 keV
122
ANASTASI
2015
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2${\mathit m}_{{{\mathit \mu}}}$ - 1 GeV
$<1.7 \times 10^{-3}$ 90 123
ANASTASI
2015A
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5 - 320$ MeV
$<4.2 \times 10^{-4}$ 90 124
BATLEY
2015A
NA48 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 36 MeV
125
JAEGLE
2015
BELL ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.1 - 3.5$ GeV
$<3 \times 10^{-13}$ 126
KAZANAS
2015
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2${\mathit m}_{{{\mathit e}}}$ $-$ 100 MeV
$<6 \times 10^{-12}$ 127
SUZUKI
2015
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.9 - 4.3$ eV
$<2.3 \times 10^{-13}$ 99.7 128
VINYOLES
2015
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 8 eV
$<2 \times 10^{-13}$ 129
ABE
2014F
XMAS ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $40 - 120$ keV
$<1.8 \times 10^{-3}$ 90 130
AGAKISHIEV
2014
HDES ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 63 MeV
$<9.0 \times 10^{-4}$ 90 131
BABUSCI
2014
KLOE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 969 MeV
132
BATELL
2014
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-3} - 1$ GeV
$<1.3 \times 10^{-7}$ 95 133
BLUEMLEIN
2014
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.6 GeV
$<3 \times 10^{-18}$ 134
FRADETTE
2014
COSM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $50 - 300$ MeV
$<3.5 \times 10^{-4}$ 90 135
LEES
2014J
BABR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.2 GeV
$<9 \times 10^{-4}$ 95 136
MERKEL
2014
A1 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $40 - 300$ MeV
$<3 \times 10^{-15}$ 137
AN
2013B
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 keV
$<7 \times 10^{-14}$ 138
AN
2013C
XE10 ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 100 eV
$<8 \times 10^{-4}$ 139
DIAMOND
2013
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $30 - 250$ MeV
$<2 \times 10^{-3}$ 90 140
GNINENKO
2013
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $25 - 120$ MeV
$<2.2 \times 10^{-13}$ 141
HORVAT
2013
HPGE ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 230 eV
$<8.06 \times 10^{-5}$ 95 142
INADA
2013
LSW ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.04 eV$−$26 keV
$<2 \times 10^{-10}$ 95 143
MIZUMOTO
2013
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 eV
$<1.7 \times 10^{-7}$ 144
PARKER
2013
LSW ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 53 $\mu $eV
$<5.32 \times 10^{-15}$ 145
PARKER
2013
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 53 $\mu $eV
$<1 \times 10^{-15}$ 146
REDONDO
2013
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 keV
$<8 \times 10^{-8}$ 90 147
GNINENKO
2012A
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 135$ MeV
$<1 \times 10^{-7}$ 90 148
GNINENKO
2012B
CHRM ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 500$ MeV
$<1 \times 10^{-3}$ 90 149
ABRAHAMYAN
2011
${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $175 - 250$ MeV
$<9 \times 10^{-8}$ 95 150
BLUEMLEIN
2011
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 70 MeV
$<1 \times 10^{-7}$ 151
BJORKEN
2009
BDMP ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 - 400$ MeV
$<5 \times 10^{-9}$ 152
BJORKEN
2009
ASTR ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2 - 50$ MeV
1  AAD 2024AS search for hidden photons resulting from Higgs decays in the Falkowski-Ruderman-Volansky-Zupan model. See Fig. 7 for mass-dependent limits, value shown taken from the most constraining point at 10 GeV mass. The limits do not extend to arbitrarily high values of the kinetic mixing, stopping between $10^{-4}$ and $10^{-7}$ at the lower and upper end of the mass range respectively. The limit is also dependent on the branching fraction for Higgs decays resulting in dark photons.
2  ABRATENKO 2024A search for dark trident scattering at a neutrino beam using the MicroBooNE detector. Events involve a pair of particles ${{\mathit \chi}}{{\overline{\mathit \chi}}}$ produced from ${{\mathit \pi}^{0}}$ or ${{\mathit \eta}}$ decays mediated by a dark photon, these particles then scatter off Argon in the detector and can produce an additional dark photon which then decays. See Fig. 7 for mass-dependent limits under three possible scenarios for the ${{\mathit \chi}}$ particle.
3  ABREU 2024 look for hidden photons produced from the ${{\mathit p}}{{\mathit p}}$ collision in the decay channel ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, and exclude at 90$\%$ CL the region of $\chi $ = $4 \times 10^{-6} - 2 \times 10^{-4}$ and ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10 - 80$ MeV, with the newly excluded region near the higher values of $\chi $. See their Fig. 7 for mass-dependent limits.
4  ADACHI 2024C follows KOTAKA 2023 of the DOSUE-RR collaboration, searching for hidden photon dark matter conversion using a millimetre-wave receiver and a radioshielding box. See Fig. 11 for mass dependent limits.
5  AGOSTINI 2024A report a search for dark photon dark matter absorption and dark Compton scattering on germanium, generating electron events in the GERDA experiment. The quoted limit is at ${\mathit m}_{{{\mathit A}^{0}}}$ = 150 keV. See their Fig. 7 for mass-dependent limits.
6  AGRAWAL 2024 search for hidden photon dark matter via stimulated emission of a photon from a microwave cavity prepared in a non-classical state by a superconducting qubit.
7  ANDREEV 2024A perform a missing-energy search in the NA64 detector to look for an MeV-scale hidden photon mediator to a stable fermionic dark sector particle. See Fig. 3 for mass-dependent limits.
8  ANDREEV 2024E report results from the NA64$\mu $ beam dump experiment, employing a high-intensity muon beam. They set limits on the kinetic mixing parameter of an invisibly decaying hidden photon. See their Fig. 19 for mass-dependent limits.
9  ARAMBURO-GARCIA 2024 search for evidence of resonant conversion of regular photons into dark photons within the inter-galactic medium using the expected imprint on the CMB anisotropies. Quoted limit is for their "conservative" approach - see their Fig. 5 for mass-dependent limits.
10  ARNQUIST 2024 use the MAJORANA DEMONSTRATOR to search for keV-mass hidden photon dark matter absorption by Germanium. See Fig. 5 for mass-dependent limits.
11  CERVANTES 2024 use a superconducting radio frequency cavity at the SQMS Centre (Fermilab) to search for hidden photon dark matter at 1.3 GHz. See their Fig. 3 for limits in context.
12  CORTINA-GIL 2024A report results from the NA62 beam dump experiment, searching for production and decays of dark photons to lepton pairs. Quoted limit applies around 300 MeV, but does not extend to arbitrarily high kinetic mixing. See their Fig. 4 for mass-dependent limits
13  DOLAN 2024 constrain anomalous cooling of globular cluster stars due to the emission of hidden photons. Best limit is taken from the envelope of limits from the R parameter, R2 parameter and Tip of the Red Giant branch. This study includes hidden photon emission in stellar evolution simulation and so supersedes red giant bound in AN 2020.
14  HE 2024 present results from the APEX collaboration. They look for hidden photon dark matter using a radio frequency cavity at 7.139 GHz. See their Fig. 4 for mass-dependent limits.
15  KNIRCK 2024 search for hidden photon dark matter using GigaBREAD, a broadband haloscope operating at room temperature that uses a parabolic reflector and a horn antenna. See their Fig. 4 for mass-dependent limits.
16  LEVINE 2024 search for hidden photon dark matter using Dark E-Field Radio, a broadband haloscope consisting of an E-field antenna inside a shielded room. This is a continuation of their experiment previously reported in GODFREY 2021. See their Fig. 12 for mass-dependent limits.
17  LIU 2024 constrain hidden photon dark matter over a broad mass range using the very high-energy gamma-ray spectrum of blazars Mrk 501 and Mrk 421. See their Fig. 4 for mass-dependent limits which also depend on the density profiles of the host halos of the blazars. Quoted limit is for the case where the host halos have an NFW profile in Fig. 6.
18  MCCARTHY 2024 search for evidence of photons converting into hidden photons as they traverse large-scale structure, which would lead to a patchy-screening effect observable in CMB anisotropy maps. See their Fig. 3 for mass-dependent limits. This analysis improves upon a similar study by ARAMBURO-GARCIA 2024 - see the note added in MCCARTHY 2024.
19  TANG 2024 present results from a hidden photon dark matter search at 1.3 GHz with SHANHE, a tunable superconducting radio frequency cavity. See their Fig. 3 for mass-dependent limits.
20  YAN 2024A use data from the JUNO probe to constrain hidden photons via the way they would modify Jupiter's magnetic field. See their Fig. 7 for mass-dependent limits.
21  AAD 2023BO look for rare decays of the ${{\mathit Z}}$ boson, ${{\mathit Z}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{+}$ ${{\mathit H}^{\,'}}$, with dark Higgs decaying into a pair of hidden photons, assuming that at least two of the hidden photons decay into ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. The quoted limit assumes the hidden fine structure constant ${{\mathit \alpha}_{{{D}}}}$ = 0.1 and the dark Higgs mass ranging 20 to 70 GeV. See their Fig.5 for the mass-dependent limits.
22  AAD 2023I look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ with hidden photons decaying into displaced lepton or light quark pairs, and set limits on the kinetic mixing within $1 \times 10^{-4} - 1 \times 10^{-8}$ for the given mass range. The quoted limit is for ${\mathit m}_{{{\mathit A}^{0}}}$ $\simeq{}$ 13 GeV with a branching fraction of 0.1 for the Higgs decaying into hidden photon pairs. See their Fig. 13 for the mass-dependent limits.
23  AAD 2023T is analogous to AAD 2022S, but using the ${{\mathit Z}}{{\mathit H}}$ production mode, and set the upper limit on the branching ratio B(${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$) within $0.0219 - 0.0252$ (95$\%$ CL).
24  AALBERS 2023A look for an absorption of hidden photon dark matter. The quoted limit is for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.4 keV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 7 for mass-dependent limits.
25  ABLIKIM 2023AF look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$. They set limits within the $1.6 \times 10^{-3} - 5.7 \times 10^{-3}$. See their Fig. 3 for mass-dependent limits.
26  ABUDINEN 2023B look for hidden photons in the dark Higgsstrahlung process, ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit H}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$) with ${{\mathit H}^{\,'}}$ being invisible. They set upper limits on the product of the kinetic mixing and the hidden gauge coupling, ${{\mathit \chi}^{2}}\cdot{}{{\mathit \alpha}_{{{D}}}}$, in the range of $1.7 \times 10^{-8} - 2 \times 10^{-6}$ at 90$\%$ CL for a 1 GeV dark Higgs mass. See their Fig. 3 for the mass-dependent limits.
27  ADHIKARI 2023 look for the annual modulation signal induced by solar flux of hidden photons. See their Fig. 10 for mass-dependent limits.
28  ADHIKARI 2023A look for absorption and Compton-like processes of hidden photon dark matter. The quoted limit is for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 12 keV. Limits between $6 \times 10^{-14} - 3 \times 10^{-11}$ are obtained. See their Fig. 4 for mass-dependent limits.
29  ADRIAN 2023 is an update of ADRIAN 2018, and use the data from the 2016 engineering run at 2.3 GeV. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 74 MeV. See their Fig. 28 for the mass-dependent limits.
30  AGNES 2023A look for an absorption of hidden photon dark matter. The quoted limit is for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.03 keV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 2 for mass-dependent limits.
31  AN 2023A look for absorption of hidden photon dark matter at radio telescopes, setting limits based on data from the FAST telescope. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 1 for mass-dependent limits.
32  ANDREEV 2023 is an update of ANDREEV 2021 and ANDREEV 2021A. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 3 for mass-dependent limits.
33  BAJJALI 2023 look for hidden photon dark matter by using a $12 - 18$ GHz dish antenna at U. Hamburg that is sensitive to vertically aligned hidden photon polarizations. They assume a local density of $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$. See their Figure 12 for mass-dependent limits in the range of ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $50 - 75$ $\mu eV$ under the assumption of randomly aligned hidden photon polarizations, defined as "1 sigma sensitivity". The run is labelled BRASS-p.
34  CORTINA-GIL 2023C NA62 beam dump experiment searches for hidden photons decaying to ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, extending their previous search CORTINA-GIL 2019. The quoted limit applies at 300 MeV but does not extend to arbitrarily large kinetic mixing parameters. See Fig. 4 for mass-dependent limits.
35  HAYRAPETYAN 2023G search for kinetically mixed hidden photons in proton-proton collisions at the LHC that would generate a narrow peak in the mass spectrum of dimuon events. The mass window between 2.6 and 4.2 GeV is left unconstrained to avoid ${{\mathit J / \psi}}$ and ${{\mathit \psi}{(2S)}}$ resonances. Mass dependent limits given in their Fig. 6.
36  KOTAKA 2023 is an update of TOMITA 2020, and set limits $\chi $ $<$ $0.3 - 2 \times 10^{-10}$ for the quoted mass range. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.39 GeV/cm${}^{3}$ is assumed. See their Fig. 5 for mass-dependent limits.
37  LI 2023I set cooling bounds on the emission of hidden photons from the Sun, red giant, and horizontal branch stars, including emission of both the transverse and longitudinal modes. Cooling bounds are computed assuming a static model as opposed to considering the impact on stellar evolution. The result is comparable to earlier estimates of the same bound e.g. REDONDO 2013. Limit applies at the most constraining mass around 200 eV for the solar bound.
38  RAMANATHAN 2023 look for hidden photon dark matter using a gold-plated copper dish antenna cooled to 20 mK. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.45 GeV/cm${}^{3}$ is assumed. Limits between $7.9 \times 10^{-13}$ and $3.81 \times 10^{-12}$ are obtained. See their Fig. 5 for mass-dependent limits.
39  ROMANENKO 2023 employed two superconducting radio frequency cavities with a high quality factor, optimized for detecting the longitudinal polarization of the hidden photon. The quoted limit is set at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $5\mu $eV. See their Fig. 4 for the mass-dependent limits.
40  XIA 2023 is analogous to WU 2022A and use the Fermi-LAT pulsar timing array. They set a bound on the local density as $\rho _{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 7 GeV/cm${}^{3}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ ${ {}\lesssim{} }$ $10^{-23}$ eV at 95$\%$ CL, with weaker constraints up to $10^{-22}$ eV. See their Fig. 1 for the mass-dependent limits.
41  AAD 2022J look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ and ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$, and set limits on the kinetic mixing and the Higgs portal coupling. See their Figs. 19 and 20 for the mass-dependent limits.
42  AAD 2022S look for decays of a Higgs boson into ${{\mathit \gamma}}$ and ${{\mathit \gamma}^{\,'}}$ using the VBF production mode, and set the upper limit on the branching ratio at 0.018 (95$\%$ CL) for the 125 GeV Higgs boson. For the quoted mass range, the signal acceptance changes by less than 1$\%$.
43  APRILE 2022 is analogous to AN 2020, and their limit was corrected in the erratum to this paper: APRILE 2024B. They set limits $\chi $ $<$ $2 \times 10^{-12}$ (eV/${\mathit m}_{{{\mathit \gamma}^{\,'}}}$) for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 3 eV (90$\%$ C.L.). For ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $>$ 3 eV, see Fig. 1 of APRILE 2024B.
44  APRILE 2022 extend APRILE 2019 to lower masses by removing the background of ionization signals correlated with high-energy events. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.09 keV. See their Fig. 15 for mass-dependent limits.
45  APRILE 2022B is an update of APRILE 2020, and set limits $\chi $ ${ {}\lesssim{} }$ $5 \times 10^{-17} - 2 \times 10^{-13}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 keV. They exclude the XENON1T excess found in APRILE 2020. See their Fig. 6 for mass-dependent limits.
46  BATTAGLIERI 2022 is analogous to BATELL 2014, and derived limits from the electron beam dump experiment at Jefferson Lab (BDX-MINI). Limits at the level of $7 \times 10^{-5} - 1 \times 10^{-2}$ are obtained for the dark matter mass ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/3 and the hidden gauge coupling $\alpha _{D}$ = 0.1. See their Fig. 11.
47  BOLTON 2022 use the Ly-$\alpha $ forest at z $\simeq{}$ 0.1 as a calorimeter for heating in the intergalactic medium by the resonant conversion of hidden photon dark matter to photons, which is assumed to be responsible for the tension between the predicted and observed Ly-$\alpha $ absorption linewidths.
48  CERVANTES 2022 use a dielectrically loaded Fabry-Perot open cavity to look for hidden photon dark matter. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.45 GeV/cm${}^{3}$ is assumed. See their Fig. 5 for mass-dependent limits.
49  CHILES 2022 look for hidden photon dark matter by using a layered dielectric target and a superconducting nanowire single-photon detector. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.4 GeV/cm${}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
50  HOCHBERG 2022 update HOCHBERG 2019. The quoted limit applies to ${\mathit m}_{{{\mathit A}^{0}}}$ $\simeq{}$ 11 eV. See their Fig. 5 for mass-dependent limits.
51  LEES 2022 look for a hidden fermion-fermion bound state decaying into three hidden photons, which subsequently decay into ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, or ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$. For the bound-state mass in the range of $0.05 - 9.5$ GeV, limits at the level of $5 \times 10^{-5} - 1 \times 10^{-3}$ are obtained. See their Fig. 6 for mass-dependent limits.
52  LU 2022 derive the limit by studying the effect of photons oscillating into hidden photons on the surface luminosity of the neutron star RX J1856.6-3754.
53  MANENTI 2022 look for hidden photon dark matter by using a multilayer dielectric haloscope. Limits between $6.86 \times 10^{-11}$ and $5 \times 10^{-8}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $1.1 - 3.1$ eV. See their Fig. 11 for mass-dependent limits.
54  THOMAS 2022 improved KRIBS 2021 by taking account of the changes in the parton distribution functions due to the inclusion of hidden photons. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 4 GeV. Limits in the range of $3 \times 10^{-2} - 9 \times 10^{-2}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 80$ GeV. See their Fig. 1 for the limits.
55  TUMASYAN 2022AH look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$, and set limits on the Higgs portal coupling. See their Fig. 6 for the limits.
56  TUMASYAN 2022N look for exotic decays of the SM-like Higgs boson, ${{\mathit H}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$), and set limits on the branching fraction product. See their Fig. 7 for mass- and lifetime-dependent limits.
57  WU 2022A look for direction-dependent oscillations in the gravitational potential generated by ultralight hidden photon dark matter, and set a bound on its local density as $\rho _{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ 5 GeV/cm${}^{3}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{ {}\lesssim{} }$ $10^{-23}$ eV at 95$\%$ CL.
58  ANDREEV 2021 is analogous to BANERJEE 2018A. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 3 for mass-dependent limits.
59  ANDREEV 2021A extends the limits of BANERJEE 2019 by taking account of production through the resonant annihilation of secondary positrons with atomic electrons. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.23 GeV, assuming the fermion dark matter of mass ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/3 and the hidden gauge coupling $\alpha _{D}$ = 0.1. See their Fig.3 for mass-dependent limits.
60  BI 2021 look for the gamma-ray spectral attenuation due to scattering with hidden photons constituting all dark matter, using the measurements of sub-PeV gamma-rays from the Crab Nebula by the Tibet AS${{\mathit \gamma}}$ and HAWC experiments, together with MAGIC and HEGRA gamma-ray data. See their Fig. 4 for mass-dependent limits.
61  CAZZANIGA 2021 look for semi-visible decays of hidden photons, ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \chi}_{{{1}}}}{{\mathit \chi}_{{{2}}}}$ (${{\mathit \chi}_{{{2}}}}$ $\rightarrow$ ${{\mathit \chi}_{{{1}}}}{{\mathit e}^{+}}{{\mathit e}^{-}}$), where ${{\mathit \chi}_{{{1}}}}$ and ${{\mathit \chi}_{{{2}}}}$ are hidden fermions. They exclude $3 \times 10^{-5}{ {}\lesssim{} }$ $\chi $ ${ {}\lesssim{} }$ $2 \times 10^{-2}$ assuming the hidden gauge coupling ${{\mathit \alpha}_{{{D}}}}$ = 0.1, and the fermion masses ${\mathit m}_{{{\mathit \chi}_{{{1}}}}}$ = ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/3, (${\mathit m}_{{{\mathit \chi}_{{{2}}}}}$ $−$ ${\mathit m}_{{{\mathit \chi}_{{{1}}}}})/{\mathit m}_{{{\mathit \chi}_{{{1}}}}}$ = 0.4. See their Fig. 4 for mass-dependent limits.
62  DIXIT 2021 look for hidden photon dark matter by using a superconducting transmon qubit dispersively coupled to a high $\mathit Q$ storage cavity. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.4 GeV/cm${}^{3}$ is assumed. See their Fig.4 for mass-dependent limits.
63  GHOSH 2021 use existing haloscope axion search limits to set limits on hidden photon dark matter, considering the polarization of hidden photons. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 3 $\mu $eV. See their Fig. 1 for mass-dependent limits.
64  GODFREY 2021 look for hidden photon dark matter by using a wideband antenna, and set 5$\sigma $ limits on $\chi $. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.38 GeV/cm${}^{3}$ is assumed. See their updated Fig. 12 in arXiv:2101.02805v4 for mass-dependent limits in the range of ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.207 - 1.24$ $\mu $eV.
65  KOPYLOV 2021A is an update of KOPYLOV 2019, but use ${}^{}\mathrm {Ne}$ gas instead of ${}^{}\mathrm {Ar}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12 eV. See their Fig. 4 for mass-dependent limits.
66  KRIBS 2021 used the HERA data on neutral current deep inelastic ${{\mathit e}}{{\mathit p}}$ scattering to derive the limits, which become weaker for heavier masses. See their Fig. 3 for mass-dependent limits.
67  SCHMIDT 2021 use the microscopic Parton-Hadron-String Dynamics approach to extract limits by comparing the theoretically calculated dilepton spectra with the HADES data on the search for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$. See their Fig. 5 for the mass-dependent limits for various allowed surplus of the hidden photon contribution over the standard model yield.
68  TSAI 2021 update the limits from the CHARM and NuCal experiments, taking account of additional production channels from proton bremsstrahlung and ${{\mathit \eta}}$ meson decays, respectively. Limits between $3 \times 10^{-8}$ and $1 \times 10^{-4}$ are obtained for 0.01 $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 0.8 GeV (see their Fig. 1).
69  AAIJ 2020C look for hidden photons produced from the ${{\mathit p}}{{\mathit p}}$ collision in the decay channel ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. For prompt decaying hidden photons, limits at the level of $10^{-4} - 10^{-3}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.214 - 30$ GeV. See their Fig. 2 for mass-dependent limits.
70  AAIJ 2020C look for hidden photons produced from the ${{\mathit p}}{{\mathit p}}$ collision in the decay channel ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$. For hidden photons with lifetimes of order ps, limits at the level of $10^{-5}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $218 - 315$ MeV. See their Fig. 4 for mass-dependent limits.
71  ABLIKIM 2020AB search for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \pi}^{0}}$), and set the upper limit on the product branching fraction of order $10^{-7}$. See their Fig. 7 for mass-dependent limits.
72  AGOSTINI 2020 is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 150 keV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. Their limits in their Fig. 3 were later found to be incorrect due to an error of their Eqs. (1) and (2). See Fig. 3 in AGOSTINI 2022A for the corrected limits.
73  AMARAL 2020 use a second-generation SuperCDMS high-voltage eV-resolution detector to set limits on dark-matter hidden photon absorption. The quoted limit is for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 17 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 3 for mass-dependent limits.
74  AN 2020 updates the direct detection limit of AN 2013C on solar flux of hidden photons; $\chi $ $<$ $1.6 \times 10^{-12}$ (eV/${\mathit m}_{{{\mathit \gamma}^{\,'}}}$) for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 6 eV (90$\%$ C.L.). For ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $>$ 6 eV, see their Fig. 1 for mass-dependent limits.
75  ANDRIANAVALOMAHEFA 2020 is analogous to SUZUKI 2015, but uses a mirror that is about one order of magnitude larger than in similar studies in the past. Limits at the level of $10^{-12}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2.5 - 7$ eV. See their Fig.23 and Table III for mass-dependent limits.
76  APRILE 2020 is analogous to ABE 2014F, and set limits $\chi $ ${ {}\lesssim{} }$ $10^{-16} - 10^{-12}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 keV. They also found an excess over known backgrounds, which favors the mass ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $2.3$ $\pm0.2$ keV with a 3 $\sigma $ significance. See their Fig. 10 for mass-dependent limits.
77  ARALIS 2020 is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.1 keV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. The limits at masses above 3 keV in their Fig. 10 was later found to be incorrect due to an error in their analysis. See Fig. 3 in erratum for the corrected limits.
78  ARGUELLES 2020 examine hidden-photon production in atmospheric cosmic-ray showers and its decay in IceCube and Super-Kamiokande. The quoted limit assumes a lifetime of $\mathit c\tau $ = 0.1 km. See their Fig. 16 for mass- and lifetime-dependent limits.
79  ARNAUD 2020 look for the absorption signal of hidden photon dark matter in a ${}^{}\mathrm {Ge}$ detector. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 9 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 3 for mass-dependent limits.
80  BANERJEE 2020 is an update of BANERJEE 2018. They exclude $8.2 \times 10^{-5}{ {}\lesssim{} }$ $\chi $ ${ {}\lesssim{} }$ $1 \times 10^{-2}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.5 - 24$ MeV. In particular, they exclude $\chi $ = $1.2 \times 10^{-4} - 6.8 \times 10^{-4}$ for the 16.7 MeV gauge boson. See their Fig. 5 for mass-dependent limits.
81  BARAK 2020 is analogous to AGUILAR-AREVALO 2019A, and look for hidden photon dark matter by using the Skipper CCD. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12.8 eV. See their Fig. 4 for mass-dependent limits.
82  KRASNIKOV 2020 showed that the limit of BANERJEE 2020 combined with the measured anomalous magnetic moment of the electron exclude the 16.7 MeV gauge boson suggested by the ATOMKI (KRASZNAHORKAY 2016) experiment if it has pure vector or axial-vector interactions.
83  SHE 2020 look for solar hidden photons. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 180 eV. See their Fig. 4 for mass-dependent limits.
84  SHE 2020 look for hidden photon dark matter and set limits $\chi $ $<$ $1.3 \times 10^{-15} - 2.8 \times 10^{-14}$ for the quoted mass range. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 6 for mass-dependent limits.
85  SIRUNYAN 2020AQ look for a narrow resonance decaying into a pair of muons. For ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 45 GeV, they use dedicated high-rate dimuon triggers to reduce the muon transverse momentum thresholds. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 50 GeV, and limits of order $10^{-3}$ are obtained for the quoted mass range. See their Fig. 3 for mass-dependent limits.
86  TOMITA 2020 look for hidden photon dark matter using a planar metal plate and cryogenic receiver and set limits $\chi $ $<$ $1.8 - 4.3 \times 10^{-10}$ for the quoted mass range. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.39 GeV/cm${}^{3}$ is assumed. See their Fig. 7 for mass-dependent limits.
87  WANG 2020A is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 185 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 11 for mass-dependent limits.
88  AABOUD 2019G look for ${{\mathit h}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$) and exclude a kinetic mixing around $10^{-9} - 10^{-8}$ for B(${{\mathit h}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$) = 0.01 and 0.1. See their Fig. 9 for mass-dependent limits.
89  ABLIKIM 2019A look for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \eta}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$). Limits between $6 \times 10^{-3}$ and $5 \times 10^{-2}$ are obtained (see their Fig. 8).
90  ABLIKIM 2019H look for ${{\mathit J / \psi}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \eta}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$). Limits between $3.4 \times 10^{-3}$ and $2.6 \times 10^{-2}$ are obtained. See their Fig. 5 for mass-dependent limits.
91  AGUILAR-AREVALO 2019A look for the absorption signal of hidden photon dark matter by using a CCD. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 17 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
92  APRILE 2019D is analogous to ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.7 keV. See their Fig. 5(f) for mass-dependent limits.
93  BANERJEE 2019 is an update of BANERJEE 2018A. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 3 for mass-dependent limits.
94  BHOONAH 2019 examine heating of Galactic Center gas clouds by hidden photon dark matter. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $10^{-12}$ eV. See their Fig. 2 for mass-dependent limits.
95  BRUN 2019 is analogous to SUZUKI 2015. The limit is derived under an assumption that hidden photons constitute the local dark matter density $\rho _{\gamma '}$ = 0.3 GeV/cm${}^{3}$.
96  CORTINA-GIL 2019 look for an invisible hidden photon in the reaction ${{\mathit K}^{+}}$ $\rightarrow$ ${{\mathit \pi}^{+}}{{\mathit \pi}^{0}}$ (${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}$ ${{\mathit \gamma}^{\,'}}$). The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $62.5 - 65$ MeV. See their Figs. 6 and 7 for mass-dependent limits.
97  DANILOV 2019 examined the hidden photon production in nuclear reactors, correctly taking account of the effective photon mass in the reactor and detector. The limit gets weaker for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ less than the effective photon mass in proportion to 1/${{\mathit m}^{2}}_{{{\mathit \gamma}^{\,'}}}$. See their Fig. 1 for mass-dependent limits.
98  HOCHBERG 2019 look for the absorption signal of hidden photon dark matter by using superconducting-nanowire single-photon detectors. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 1 eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 4 for mass-dependent limits.
99  KOPYLOV 2019 look for hidden-photon dark matter using a counter with an aluminum cathode and derive limits assuming it constitute all the local dark matter. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 12 eV. See their Fig. 7 for mass-dependent limits.
100  KOVETZ 2019 examine heating of the early Universe plasma by hidden photon dark matter, and derive the limits by requiring that the cosmic mean 21 cm brightness temperature relative to the CMB temperature satisfy T$_{21}$ $>$ $-100$ mK. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $2 \times 10^{-14}$ eV. See their Fig. 3 for mass-dependent limits.
101  NGUYEN 2019 look for hidden photon dark matter with a resonant cavity, and set limits $\sim{}10^{-12}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.2 - 2.07\mu $eV. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.3 $\mu $eV. The local density $\rho _{{{\mathit \gamma}^{\,'}}}$ = 0.3 GeV/cm${}^{3}$ is assumed. See their Fig. 19 for mass-dependent limits.
102  ABE 2018F is an update of ABE 2014F. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ 40 keV. See their Fig. 5 for mass-dependent limits.
103  ADRIAN 2018 look for a hidden photon resonance in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$). The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 40 MeV. See their Fig. 4 for mass-dependent limits.
104  ANASTASI 2018B look for a hidden photon resonance in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$). The quoted limit is obtained by combining the result of ANASTASI 2016 and it applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $\simeq{}$ $519 - 987$ MeV. See their Fig. 9 for mass-dependent limits.
105  ARMENGAUD 2018 is analogous to ABE 2014F. The quoted limits applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.6 keV. See the right panel of Fig. 5 for mass-dependent limits.
106  BANERJEE 2018 look for hidden photons produced in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$), and exclude $9.2 \times 10^{-5}{ {}\lesssim{} }$ $\chi $ ${ {}\lesssim{} }$ $1 \times 10^{-2}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1 - 23$ MeV. They also set a limit on the electron coupling to a 16.7 MeV gauge boson suggested by the ATOMKI (KRASZNAHORKAY 2016) experiment. See their Fig. 3 for mass-dependent limits.
107  BANERJEE 2018A look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$ . The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1 MeV. See their Fig. 15 for mass-dependent limits.
108  KNIRCK 2018 is analogous to SUZUKI 2015. See their Fig. 5 for mass-dependent limits.
109  ABGRALL 2017 is analogous to ABE 2014F using the MAJORANA DEMONSTRATOR. See their Fig. 3 for limits between 6 keV $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 97 keV.
110  ABLIKIM 2017AA look for ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ or ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$). Limits between $10^{-3}$ and $10^{-4}$ are obtained (see their Fig. 3).
111  ANGLOHER 2017 is analogous to ABE 2014F. The quoted limit is at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 0.7 keV. See their Fig. 8 for mass-dependent limits.
112  BANERJEE 2017 look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{-}}$ ${{\mathit Z}}$ $\rightarrow$ ${{\mathit e}^{-}}{{\mathit Z}}{{\mathit \gamma}^{\,'}}$. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 2 MeV. See their Fig. 3 for mass-dependent limits.
113  CHANG 2017 examine the hidden photon emission from SN1987A, including the effects of finite temperature and density on $\chi $ and obtain limits $\chi $ (${\mathit m}_{{{\mathit \gamma}^{\,'}}}$/MeV) ${ {}\lesssim{} }$ $3 \times 10^{-9}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 15 MeV and $\chi $ ${ {}\lesssim{} }$ $10^{-9}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $15 - 120$ MeV.
114  DUBININA 2017 look for ${{\mathit \mu}^{+}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\overline{\mathit \nu}}_{{{\mu}}}}{{\mathit \nu}_{{{e}}}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$) in a nuclear photoemulsion. The quoted limit applies to ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 1.1 MeV. Limits between $4.5 \times 10^{-3}$ and $10^{-2}$ are obtained (see their Fig. 3).
115  LEES 2017E look for invisible decays of hidden photons produced in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$. See their Fig. 5 for limits in the mass range ${\mathit m}_{{{\mathit \gamma}^{\,'}}}{}\leq{}$ 8 GeV.
116  AAD 2016AG look for hidden photons promptly decaying into collimated electrons and/or muons, assuming that they are produced in the cascade decays of squarks or the Higgs boson. See their Fig. 10 and Fig.13 for their limits on the cross section times branching fractions.
117  ANASTASI 2016 look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \pi}^{+}}$ ${{\mathit \pi}^{-}}$ in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$. Limits between $4.3 \times 10^{-3}$ and $4.4 \times 10^{-4}$ are obtained for 527 $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 987 MeV (see their Fig. 9).
118  KHACHATRYAN 2016 look for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ in a dark SUSY scenario where the SM-like Higgs boson decays into a pair of the visible lightest neutralinos with mass 10 GeV, both of which decay into ${{\mathit \gamma}^{\,'}}$ and a hidden neutralino with mass 1 GeV. See the right panel in their Fig. 2.
119  AAD 2015CD look for ${{\mathit H}}$ $\rightarrow$ ${{\mathit Z}}{{\mathit \gamma}^{\,'}}$ $\rightarrow$ 4 ${{\mathit \ell}}$ with the ATLAS detector at LHC and find $\chi $ $<$ $4 - 17 \times 10^{-2}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $15 - 55$ GeV. See their Fig. 6.
120  ADARE 2015 look for a hidden photon in ${{\mathit \pi}^{0}}$, ${{\mathit \eta}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit e}^{+}}{{\mathit e}^{-}}$ at the PHENIX experiment. See their Fig. 4 for mass-dependent limits.
121  AN 2015A derived limits from the absence of ionization signals in the XENON10 and XENON100 experiments, assuming hidden photons constitute all the local dark matter. Their best limit is $\chi $ $<$ $1.3 \times 10^{-15}$ at ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = 18 eV. See their Fig. 1 for mass-dependent limits.
122  ANASTASI 2015 look for a production of a hidden photon and a hidden Higgs boson with the KLOE detector at DA$\Phi $NE, where the hidden photon decays into a pair of muons and the hidden Higgs boson lighter than ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ escape detection. See their Figs. 6 and 7 for mass-dependent limits on a product of the hidden fine structure constant and the kinetic mixing.
123  ANASTASI 2015A look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}{{\mathit \gamma}}$. Limits between $1.7 \times 10^{-3}$ and $1 \times 10^{-2}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $5 - 320$ MeV (see their Fig. 7).
124  BATLEY 2015A look for ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$) at the NA48/2 experiment. Limits between $4.2 \times 10^{-4}$ and $8.8 \times 10^{-3}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $9 - 120$ MeV (see their Fig. 4).
125  JAEGLE 2015 look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$, or ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ in the dark Higgstrahlung channel, ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit H}^{\,'}}$ (${{\mathit H}^{\,'}}$ $\rightarrow$ ${{\mathit \gamma}^{\,'}}{{\mathit \gamma}^{\,'}}$) at the BELLE experiment. They set limits on a product of the branching fraction and the Born cross section as well as a product of the hidden fine structure constant and the kinetic mixing. See their Figs. 3 and 4.
126  KAZANAS 2015 set limits by studying the decay of hidden photons ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ inside and near the progenitor star of SN1987A. See their Fig. 6 for mass-dependent limits.
127  SUZUKI 2015 looked for hidden-photon dark matter with a dish antenna and derived limits assuming they constitute all the local dark matter. Their limits are $\chi $ $<$ $6 \times 10^{-12}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $1.9 - 4.3$ eV. See their Fig. 7 for mass-dependent limits.
128  VINYOLES 2015 performed a global fit analysis based on helioseismology and solar neutrino observations, and set the limits $\chi {\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ $1.8 \times 10^{-12}$ eV for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $3 \times 10^{-5} - 8$ eV. See their Fig. 11.
129  ABE 2014F look for the photoelectric-like interaction in the XMASS detector assuming the hidden photon constitutes all the local dark matter. Limits between $2 \times 10^{-13}$ and $1 \times 10^{-12}$ are obtained, where the relation $\chi {}^{2}$ = $\alpha $'/$\alpha $ is used to translate the original bound on the ratio of the hidden and EM fine-structure constants. See their Fig. 3 for mass-dependent limits.
130  AGAKISHIEV 2014 look for hidden photons ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ at the HADES experiment, and set limits on ${{\mathit \chi}}$ for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $0.02 - 0.6$ GeV. See their Fig. 5 for mass-dependent limits.
131  BABUSCI 2014 look for the decay ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit \mu}^{+}}$ ${{\mathit \mu}^{-}}$ in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \mu}^{+}}{{\mathit \mu}^{-}}{{\mathit \gamma}}$. Limits between $4 \times 10^{-3}$ and $9.0 \times 10^{-4}$ are obtained for 520 MeV $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}<$ 980 MeV (see their Fig. 7).
132  BATELL 2014 derived limits from the electron beam dump experiment at SLAC (E-137) by searching for events with recoil electrons by sub-GeV dark matter produced from the decay of the hidden photon. Limits at the level of $10^{-4} - 10^{-1}$ are obtained for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ = $10^{-3} - 1$ GeV, depending on the dark matter mass and the hidden gauge coupling (see their Fig. 2).
133  BLUEMLEIN 2014 analyzed the beam dump data taken at the U-70 accelerator to look for ${{\mathit \gamma}^{\,'}}$-bremsstrahlung and the subsequent decay into muon pairs and hadrons. See their Fig. 4 for mass-dependent excluded region.
134  FRADETTE 2014 studied effects of decay of relic hidden photons on BBN and CMB to set constraints on very small values of the kinetic mixing. See their Figs. 4 and 7 for mass-dependent excluded regions.
135  LEES 2014J look for hidden photons in the reaction ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$, ${{\mathit \mu}^{+}}$ ${{\mathit \mu}^{-}}$). Limits at the level of $10^{-4} - 10^{-3}$ are obtained for 0.02 GeV $<$ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ 10.2 GeV. See their Fig. 4 for mass-dependent limits.
136  MERKEL 2014 look for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ at the A1 experiment at the Mainz Microtron (MAMI). See their Fig. 3 for mass-dependent limits.
137  AN 2013B examined the stellar production of hidden photons, correcting an important error of the production rate of the longitudinal mode which now dominates. See their Fig. 2 for mass-dependent limits based on solar energy loss.
138  AN 2013C use the solar flux of hidden photons to set a limit on the atomic ionization rate in the XENON10 experiment. They find $\chi $ ${\mathit m}_{{{\mathit \gamma}^{\,'}}}$ $<$ $3 \times 10^{-12}$ eV for ${\mathit m}_{{{\mathit \gamma}^{\,'}}}<$ 1 eV. See their Fig. 2 for mass-dependent limits.
139  DIAMOND 2013 analyzed the beam dump data taken at the SLAC millicharge experiment to constrain a hidden photon invisibly decaying into lighter long-lived particles, which undergo elastic scattering off nuclei in the detector. Limits between $8 \times 10^{-4} - 2 \times 10^{-2}$ are obtained. The quoted limit is applied when the dark gauge coupling is set equal to the electromagnetic coupling. See their Fig.4 for mass-dependent limits.
140  GNINENKO 2013 used the data taken at the SINDRUM experiment to constrain the decay, ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$) to derive limits. See their Fig. 2 for their mass-dependent excluded region.
141  HORVAT 2013 look for hidden-photo-electric effect in HPGe detectors induced by solar hidden photons. See their Fig. 3 for mass-dependent limits.
142  INADA 2013 search for hidden photons using an intense X-ray beamline at SPring-8. See their Fig. 4 for mass-dependent limits.
143  MIZUMOTO 2013 look for solar hidden photons. See their Fig. 5 for mass-dependent limits.
144  PARKER 2013 look for hidden photons using a cryogenic resonant microwave cavity. See their Fig.5 for mass-dependent limits.
145  PARKER 2013 derived a limit for the hidden photon CDM with a randomly oriented hidden photon field.
146  REDONDO 2013 examined the solar emission of hidden photons including the enhancement factor for the longitudinal mode pointed out by AN 2013B, and also updated stellar-energy loss arguments. See their Fig.3 for mass-dependent limits, including a review of the currently best limits from other arguments.
147  GNINENKO 2012A obtained bounds on B(${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$) $\cdot{}$ B(${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$) from the NOMAD and PS191 neutrino experiments, and derived limits between $8 \times 10^{-8} - 2 \times 10^{-4}$. See their Fig.4 for mass-dependent excluded regions.
148  GNINENKO 2012B used the data taken at the CHARM experiment to constrain the decay, ${{\mathit \eta}}({{\mathit \eta}^{\,'}}$) $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$), and derived limits between $1 \times 10^{-7} - 1 \times 10^{-4}$. See their Fig.4 for mass-dependent excluded region.
149  ABRAHAMYAN 2011 look for ${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$ in the electron-nucelon fixed-target experiment at the Jefferson Laboratory (APEX). See their Fig. 5 for mass-dependent limits.
150  BLUEMLEIN 2011 analyzed the beam dump data taken at the U-70 accelerator to look for ${{\mathit \pi}^{0}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}^{\,'}}$ (${{\mathit \gamma}^{\,'}}$ $\rightarrow$ ${{\mathit e}^{+}}{{\mathit e}^{-}}$). See their Fig. 5 for mass-dependent limits.
151  BJORKEN 2009 analyzed the beam dump data taken at E137, E141, and E774 to constrain a hidden photon produced by bremsstrahlung, subsequently decaying into ${{\mathit e}^{+}}{{\mathit e}^{-}}$, and derived limits between $10^{-7}$ and $10^{-2}$. See their Fig. 1 for mass-dependent excluded region.
152  BJORKEN 2009 required the energy loss in the ${{\mathit \gamma}^{\,'}}$ emission from the core of SN1987A not to exceed $10^{53}$ erg/s, and derived limits between $5 \times 10^{-9}$ and $2 \times 10^{-6}$. See their Fig. 1 for mass-dependent excluded region.
References