${{\mathit D}^{0}}$ $\mathit CP$-VIOLATING ASYMMETRY DIFFERENCES

$\Delta \mathit A_{CP}$ = $\mathit A_{CP}({{\mathit K}^{+}}{{\mathit K}^{-}}$) $−$ $\mathit A_{CP}({{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$)

INSPIRE   PDGID:
S032DCP
$\mathit CP$ violation in these modes can come from the decay amplitudes (direct) and/or from mixing or interference of mixing and decay (indirect). The difference $\Delta \mathit A_{CP}$ is primarily sensitive to the direct component, and only retains a second-order dependence on the indirect component for measurements where the mean decay time of the ${{\mathit K}^{+}}{{\mathit K}^{-}}$ and ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ samples are not identical. The results below are averaged assuming the indirect component can be neglected.
VALUE (%) EVTS DOCUMENT ID TECN  COMMENT
$-0.154$ $\pm0.029$ 53M,17M
AAIJ
2019D
LHCB Time-integrated
• • We do not use the following data for averages, fits, limits, etc. • •
$-0.10$ $\pm0.08$ $\pm0.03$ 6.5M,2.2M
AAIJ
2016D
LHCB See AAIJ 2019D
$0.14$ $\pm0.16$ $\pm0.08$ 2.2M,0.8M
AAIJ
2014AK
LHCB See AAIJ 2019D
$0.49$ $\pm0.30$ $\pm0.14$ 0.56M,0.22M
AAIJ
2013AD
LHCB See AAIJ 2014AK
$-0.82$ $\pm0.21$ $\pm0.11$ 1.4M,0.4M
AAIJ
2012G
LHCB See AAIJ 2016D
$-0.46$ $\pm0.31$ $\pm0.12$
AALTONEN
2012B
CDF See AALTONEN 2012O
$-0.62$ $\pm0.21$ $\pm0.10$
AALTONEN
2012O
CDF Time-integrated
$0.24$ $\pm0.62$ $\pm0.26$ 1
AUBERT
2008M
BABR Time-integrated
$-0.86$ $\pm0.60$ $\pm0.07$ 120k
STARIC
2008
BELL Time-integrated
1  Calculated from the AUBERT 2008M values of $\mathit A_{CP}({{\mathit K}^{+}}{{\mathit K}^{-}}$) and $\mathit A_{CP}({{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$). The systematic error here combines the systematic errors in quadrature, and therefore somewhat over-estimates it.
Conservation Laws:
$\mathit CP$ VIOLATION OBSERVED
References