MASS LIMITS for Excited ${{\mathit q}}$ (${{\mathit q}^{*}}$)

Limits for Excited ${{\mathit q}}$ (${{\mathit q}^{*}}$) from Single Production

INSPIRE   PDGID:
S054EQS
These limits are from ${{\mathit e}^{+}}$ ${{\mathit e}^{-}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\overline{\mathit q}}}$, ${{\mathit p}}$ ${{\overline{\mathit p}}}$ $\rightarrow$ ${{\mathit q}^{*}}$ X, or ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}$ X and depend on transition magnetic couplings between ${{\mathit q}}$ and ${{\mathit q}^{*}}$. Assumptions about ${{\mathit q}^{*}}$ decay mode are given in the footnotes and comments.
VALUE (GeV) CL% DOCUMENT ID TECN  COMMENT
$\bf{ > 6700}$ OUR LIMIT
$\text{none 1800 - 2500}$ 95 1
TUMASYAN
2023AF
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$
$\text{none 1000 - 6000}$ 95 2
TUMASYAN
2023BC
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$\text{none 1000 - 2200}$ 95 3
TUMASYAN
2023BC
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \gamma}}$
$\bf{\text{none 2000 - 6700}}$ 95 4
AAD
2020T
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1250 - 3200}$ 95 4
AAD
2020T
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$ , ${{\mathit b}}{{\mathit \gamma}}$ , ${{\mathit b}}{{\mathit Z}}$ , ${{\mathit t}}{{\mathit W}}$
$\text{none 1800 - 6300}$ 95 5
SIRUNYAN
2020AI
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1500 - 2600}$ 95 6
AABOUD
2018AB
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$
$\text{none 1500 - 5300}$ 95 7
AABOUD
2018BA
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$\text{none 1000 - 5500}$ 95 8
SIRUNYAN
2018AG
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$\text{none 1000 - 1800}$ 95 9
SIRUNYAN
2018AG
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit \gamma}}$
$\text{none 600 - 6000}$ 95 10
SIRUNYAN
2018BO
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}$ ${{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1200 - 5000}$ 95 11
SIRUNYAN
2018P
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit W}}$
$\text{none 1200 - 4700}$ 95 11
SIRUNYAN
2018P
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit Z}}$
$> 6000$ 95 12
AABOUD
2017AK
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$\text{none 700 - 3000}$ 95 13
TUMASYAN
2022O
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$> 2600$ 95 14
SIRUNYAN
2021AG
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$\text{none 600 - 5400}$ 95 15
KHACHATRYAN
2017W
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 1100 - 2100}$ 95 16
AABOUD
2016
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit b}}{{\mathit g}}$
$> 1500$ 95 17
AAD
2016AH
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$> 4400$ 95 18
AAD
2016AI
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
19
AAD
2016AV
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$, ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit W}}{{\mathit b}}$
$> 5200$ 95 20
AAD
2016S
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 1390$ 95 21
KHACHATRYAN
2016I
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit b}^{*}}{{\mathit X}}$ , ${{\mathit b}^{*}}$ $\rightarrow$ ${{\mathit t}}{{\mathit W}}$
$> 5000$ 95 22
KHACHATRYAN
2016K
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$\text{none 500 - 1600}$ 95 23
KHACHATRYAN
2016L
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 4060$ 95 24
AAD
2015V
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 3500$ 95 25
KHACHATRYAN
2015V
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit g}}$
$> 3500$ 95 26
AAD
2014A
ATLS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$> 3200$ 95 27
KHACHATRYAN
2014
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit W}}$
$> 2900$ 95 28
KHACHATRYAN
2014
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit Z}}$
$\text{none 700 - 3500}$ 95 29
KHACHATRYAN
2014J
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit \gamma}}$
$> 2380$ 95 30
CHATRCHYAN
2013AJ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit W}}$
$> 2150$ 95 31
CHATRCHYAN
2013AJ
CMS ${{\mathit p}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit q}^{*}}{{\mathit X}}$ , ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit q}}{{\mathit Z}}$
1  TUMASYAN 2023AF limit quoted above assumes ${{\mathit b}}$ ${{\mathit g}}$ $\rightarrow$ ${{\mathit b}^{*}}$ production. The limit becomes ${\mathit m}_{{{\mathit b}^{*}}}$ $>$ 4$~$TeV if contact interaction is included in the ${{\mathit b}^{*}}$ production cross section. See their Fig. 5 for limits on $\sigma \cdot{}B$.
2  TUMASYAN 2023BC search for excited light flavor quark ${{\mathit q}^{*}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. $\mathit f$ = 1.0 is assumed.
3  TUMASYAN 2023BC search for excited ${{\mathit b}}$ quark ${{\mathit b}^{*}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. $b^*$ production via gauge interactions and $\mathit f$ = 1.0 are assumed. The limit becomes $m_{b^*}>3.8$TeV if contact interaction is included in the $b^*$ production cross section.
4  AAD 2020T search for resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
5  SIRUNYAN 2020AI search for resonances decaying into dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. Assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
6  AABOUD 2018AB assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit b}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit b}^{*}}$ production and decay amplitudes.
7  AABOUD 2018BA search for first-generation excited quarks (${{\mathit u}^{*}}$ and ${{\mathit d}^{*}}$) with degenerate mass, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
8  SIRUNYAN 2018AG search for first-generation excited quarks (${{\mathit u}^{*}}$ and ${{\mathit d}^{*}}$) with degenerate mass, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
9  SIRUNYAN 2018AG search for excited ${{\mathit b}}$ quark assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
10  SIRUNYAN 2018BO assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
11  SIRUNYAN 2018P use the hadronic decay of ${{\mathit W}}$ or ${{\mathit Z}}$, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$= ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$= 1.
12  AABOUD 2017AK assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes. Only the decay of ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit g}}{{\mathit u}}$ and ${{\mathit q}^{*}}$ $\rightarrow$ ${{\mathit g}}{{\mathit d}}$ is simulated as the benchmark signals in the analysis.
13  TUMASYAN 2022O search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = 1, ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 0. The limit becomes ${\mathit m}_{{{\mathit b}^{*}}}$ $>$ 3.0 TeV ($>$3.2 TeV) if we assume ${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = 0, ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 1 (${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = 1, ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 1). See their Fig. 3 for limits on $\sigma \cdot{}B$.
14  SIRUNYAN 2021AG search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 13 TeV. The limit quoted above assumes ${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = 1, ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 0. The limit becomes ${\mathit m}_{{{\mathit b}^{*}}}$ $>$ 2.8 TeV ($>$ 3.1 TeV) if we assume ${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = 0, ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 1 (${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 1). See their Fig. 5 for limits on $\sigma \cdot{}B$.
15  KHACHATRYAN 2017W assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
16  AABOUD 2016 assume $\Lambda $ = ${\mathit m}_{{{\mathit b}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in the ${{\mathit b}^{*}}$ production and decay amplitudes.
17  AAD 2016AH search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit f}_{{{g}}}}$ = ${{\mathit f}_{{{L}}}}$ = ${{\mathit f}_{{{R}}}}$ = 1 are assumed. See their Fig. 12b for limits on $\sigma \cdot{}\mathit B$.
18  AAD 2016AI assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
19  AAD 2016AV search for single production of vector-like quarks decaying to ${{\mathit W}}{{\mathit b}}$ in ${{\mathit p}}{{\mathit p}}$ collisions. See their Fig. 8 for the limits on couplings and mixings.
20  AAD 2016S assume $\Lambda $ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
21  KHACHATRYAN 2016I search for ${{\mathit b}^{*}}$ decaying to ${{\mathit t}}{{\mathit W}}$ in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV. ${{\mathit \kappa}_{{{L}}}^{b}}$ = ${{\mathit g}_{{{L}}}}$ = 1, ${{\mathit \kappa}_{{{R}}}^{b}}$ = ${{\mathit g}_{{{R}}}}$ = 0 are assumed. See their Fig. 8 for limits on $\sigma \cdot{}\mathit B$.
22  KHACHATRYAN 2016K assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$= 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
23  KHACHATRYAN 2016L search for resonances decaying to dijets in ${{\mathit p}}{{\mathit p}}$ collisions at $\sqrt {s }$ = 8 TeV using the data scouting technique which increases the sensitivity to the low mass resonances.
24  AAD 2015V assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
25  KHACHATRYAN 2015V assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1. The contact interactions are not included in ${{\mathit q}^{*}}$ production and decay amplitudes.
26  AAD 2014A assume ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = 1.
27  KHACHATRYAN 2014 use the hadronic decay of ${{\mathit W}}$, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}={{\mathit f}}={{\mathit f}^{\,'}}$ = 1.
28  KHACHATRYAN 2014 use the hadronic decay of ${{\mathit Z}}$, assuming ${{\mathit \Lambda}}$ = ${\mathit m}_{{{\mathit q}^{*}}}$, ${{\mathit f}_{{{s}}}}={{\mathit f}}={{\mathit f}^{\,'}}$ = 1.
29  KHACHATRYAN 2014J assume ${{\mathit f}_{{{s}}}}$ = ${{\mathit f}}$ = ${{\mathit f}^{\,'}}$ = ${{\mathit \Lambda}}$ $/$ ${\mathit m}_{{{\mathit q}^{*}}}$.
30  CHATRCHYAN 2013AJ use the hadronic decay of ${{\mathit W}}$.
31  CHATRCHYAN 2013AJ use the hadronic decay of ${{\mathit Z}}$.
References