$\mathit x$ = A( ${{\overline{\mathit K}}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$)/A( ${{\mathit K}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$) = A($\Delta \mathit S=−\Delta \mathit Q)/A(\Delta \mathit S=\Delta \mathit Q$)

IMAGINARY PART OF $\mathit x$

INSPIRE   PDGID:
S013IMX
Assumes ${\mathit m}_{{{\mathit K}_L^0} }–{\mathit m}_{{{\mathit K}_S^0} }$ positive. See Listings above.
VALUE EVTS DOCUMENT ID TECN  COMMENT
$0.0012$ $\pm0.0019$ $\pm0.0009$ 640k
ANGELOPOULOS
2001B
CPLR ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$0.0012$ $\pm0.0019$ 640k 1
ANGELOPOULOS
1998E
CPLR ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}$
$-0.10$ ${}^{+0.16}_{-0.19}$ 79
SMITH
1975B
WIRE ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$-0.06$ $\pm0.05$ 4724
NIEBERGALL
1974
ASPK ${{\mathit K}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit \pi}^{+}}$
$-0.017$ $\pm0.060$ 1757
FACKLER
1973
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}$
$0.09$ $\pm0.07$ 1367
HART
1973
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.107$ ${}^{+0.092}_{-0.074}$ 1079
MALLARY
1973
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$ X
$0.07$ ${}^{+0.06}_{-0.07}$ 410 2
BURGUN
1972
HBC ${{\mathit K}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit \pi}^{+}}$
$0.12$ ${}^{+0.17}_{-0.16}$ 100 3
GRAHAM
1972
OSPK ${{\mathit K}_{{{\mu3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.05$ $\pm0.13$ 442 3
GRAHAM
1972
OSPK ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.21$ ${}^{+0.15}_{-0.12}$ 126
MANN
1972
HBC ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\overline{\mathit K}}^{0}}$
$-0.04$ $\pm0.16$ 342 3
MANTSCH
1972
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.12$ ${}^{+0.08}_{-0.09}$ 222 2
BURGUN
1971
HBC ${{\mathit K}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit \pi}^{+}}$
$0.0$ $\pm0.08$ 252
WEBBER
1971
HBC ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\overline{\mathit K}}^{0}}$
$-0.08$ $\pm0.07$ 215 4
CHO
1970
DBC ${{\mathit K}^{+}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit p}}$
$-0.11$ ${}^{+0.10}_{-0.11}$ 686
LITTENBERG
1969
OSPK ${{\mathit K}^{+}}$ ${{\mathit n}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}$
$+0.22$ ${}^{+0.37}_{-0.29}$ 121
JAMES
1968
HBC ${{\overline{\mathit p}}}{{\mathit p}}$
$0.0$ $\pm0.25$ 116
FELDMAN
1967B
OSPK ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$-0.20$ $\pm0.10$ 335 4
HILL
1967
DBC ${{\mathit K}^{+}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit p}}$
$-0.21$ ${}^{+0.11}_{-0.15}$ 196
AUBERT
1965
HLBC ${{\mathit K}^{+}}$ charge exch.
$-0.44$ ${}^{+0.32}_{-0.19}$ 152 5
BALDO-CEOLIN
1965
HLBC ${{\mathit K}^{+}}$ charge exch.
$+0.24$ ${}^{+0.40}_{-0.30}$ 109 6
FRANZINI
1965
HBC ${{\overline{\mathit p}}}{{\mathit p}}$
1  Superseded by ANGELOPOULOS 2001B.
2  BURGUN 1972 is a final result which includes BURGUN 1971.
3  First GRAHAM 1972 value is second GRAHAM 1972 value combined with MANTSCH 1972.
4  Footnote 10 of HILL 1967 should read $+0.58$, not $-0.58$ (private communication) CHO 1970 is analysis of unambiguous events in new data and HILL 1967.
5  BALDO-CEOLIN 1965 gives $\mathit x$ and $\theta $ converted by us to Re($\mathit x$) and Im($\mathit x$).
6  FRANZINI 1965 gives $\mathit x$ and $\theta $ for Re($\mathit x$) and Im($\mathit x$). See SCHMIDT 1967.
Conservation Laws:
$\Delta \mathit S$ = $\Delta \mathit Q$ RULE
References