$\mathit x$ = A( ${{\overline{\mathit K}}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$)/A( ${{\mathit K}^{0}}$ $\rightarrow$ ${{\mathit \pi}^{-}}{{\mathit \ell}^{+}}{{\mathit \nu}}$) = A($\Delta \mathit S=−\Delta \mathit Q)/A(\Delta \mathit S=\Delta \mathit Q$)

REAL PART OF $\mathit x$

INSPIRE   PDGID:
S013REX
VALUE EVTS DOCUMENT ID TECN  COMMENT
$-0.0018$ $\pm0.0041$ $\pm0.0045$
ANGELOPOULOS
1998D
CPLR ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}$
• • We do not use the following data for averages, fits, limits, etc. • •
$0.10$ ${}^{+0.18}_{-0.19}$ 79
SMITH
1975B
WIRE ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.04$ $\pm0.03$ 4724
NIEBERGALL
1974
ASPK ${{\mathit K}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit \pi}^{+}}$
$-0.008$ $\pm0.044$ 1757
FACKLER
1973
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}$
$-0.03$ $\pm0.07$ 1367
HART
1973
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$-0.070$ $\pm0.036$ 1079
MALLARY
1973
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$ X
$0.03$ $\pm0.06$ 410 1
BURGUN
1972
HBC ${{\mathit K}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit \pi}^{+}}$
$0.04$ ${}^{+0.10}_{-0.13}$ 100 2
GRAHAM
1972
OSPK ${{\mathit K}_{{{\mu3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$-0.05$ $\pm0.09$ 442 2
GRAHAM
1972
OSPK ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.26$ ${}^{+0.10}_{-0.14}$ 126
MANN
1972
HBC ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\overline{\mathit K}}^{0}}$
$-0.13$ $\pm0.11$ 342 2
MANTSCH
1972
OSPK ${{\mathit K}_{{{e3}}}}$ from ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.04$ ${}^{+0.07}_{-0.08}$ 222 1
BURGUN
1971
HBC ${{\mathit K}^{+}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit \pi}^{+}}$
$0.25$ ${}^{+0.07}_{-0.09}$ 252
WEBBER
1971
HBC ${{\mathit K}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit n}}{{\overline{\mathit K}}^{0}}$
$0.12$ $\pm0.09$ 215 3
CHO
1970
DBC ${{\mathit K}^{+}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit p}}$
$-0.020$ $\pm0.025$ 4
BENNETT
1969
CNTR Charge asym+ ${}^{}\mathrm {Cu}$ regen.
$0.09$ ${}^{+0.14}_{-0.16}$ 686
LITTENBERG
1969
OSPK ${{\mathit K}^{+}}$ ${{\mathit n}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}$
$0.03$ $\pm0.03$ 4
BENNETT
1968
CNTR
$0.09$ ${}^{+0.07}_{-0.09}$ 121
JAMES
1968
HBC ${{\overline{\mathit p}}}{{\mathit p}}$
$0.17$ ${}^{+0.16}_{-0.35}$ 116
FELDMAN
1967B
OSPK ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \Lambda}}$
$0.17$ $\pm0.10$ 335 3
HILL
1967
DBC ${{\mathit K}^{+}}$ ${{\mathit d}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit p}}{{\mathit p}}$
$0.035$ ${}^{+0.11}_{-0.13}$ 196
AUBERT
1965
HLBC ${{\mathit K}^{+}}$ charge exch.
$0.06$ ${}^{+0.18}_{-0.44}$ 152 5
BALDO-CEOLIN
1965
HLBC ${{\mathit K}^{+}}$ charge exch.
$-0.08$ ${}^{+0.16}_{-0.28}$ 109 6
FRANZINI
1965
HBC ${{\overline{\mathit p}}}{{\mathit p}}$
1  BURGUN 1972 is a final result which includes BURGUN 1971.
2  First GRAHAM 1972 value is second GRAHAM 1972 value combined with MANTSCH 1972.
3  CHO 1970 is analysis of unambiguous events in new data and HILL 1967.
4  BENNETT 1969 is a reanalysis of BENNETT 1968.
5  BALDO-CEOLIN 1965 gives $\mathit x$ and $\theta $ converted by us to Re($\mathit x$) and Im($\mathit x$).
6  FRANZINI 1965 gives $\mathit x$ and $\theta $ for Re($\mathit x$) and Im($\mathit x$). See SCHMIDT 1967.
Conservation Laws:
$\Delta \mathit S$ = $\Delta \mathit Q$ RULE
References