${{\mathit n}}$ $\rightarrow$ ${{\mathit p}}{{\mathit e}^{-}}{{\overline{\mathit \nu}}_{{{e}}}}$ DECAY PARAMETERS

See the above “Note on Baryon Decay Parameters.” For discussions of recent results, see the references cited at the beginning of the section on the neutron mean life. For discussions of the values of the weak coupling constants ${\mathit g}_{{{\mathit A}}}$ and ${\mathit g}_{{{\mathit V}}}$ obtained using the neutron lifetime and asymmetry parameter$~\mathit A$, comparisons with other methods of obtaining these constants, and implications for particle physics and for astrophysics, see DUBBERS 1991 and WOOLCOCK 1991. For tests of the $\mathit V−\mathit A$ theory of neutron decay, see EROZOLIMSKII 1991B, MOSTOVOI 1996, NICO 2005, SEVERIJNS 2006, and ABELE 2008.

$\phi _{\mathit AV}$, PHASE OF ${\mathit g}_{{{\mathit A}}}$ RELATIVE TO ${\mathit g}_{{{\mathit V}}}$

INSPIRE   JSON  (beta) PDGID:
S017F
Time reversal invariance requires this to be 0 or 180$^\circ{}$. This is related to $\mathit D$ given in the next data block and $\lambda $ ${}\equiv$ $\mathit g_{\mathit A}/\mathit g_{\mathit V}$ by sin$(\phi _{\mathit AV})$ ${}\equiv$ $\mathit D(1+3\lambda {}^{2})/2\vert \lambda \vert $; this assumes that $\mathit g_{A}$ and $\mathit g_{V}$ are real.
VALUE ($^\circ{}$) CL% DOCUMENT ID TECN  COMMENT
$\bf{ 180.017 \pm0.026}$ OUR AVERAGE
$180.012$ $\pm0.028$ 68
CHUPP
01
 
CNTR Cold ${{\mathit n}}$, polarized $>$ 91$\%$
$180.04$ $\pm0.09$
SOLDNER
00
 
CNTR Cold ${{\mathit n}}$, polarized
$180.08$ $\pm0.13$
LISING
00
 
CNTR Polarized $>$ 93$\%$
• • We do not use the following data for averages, fits, limits, etc. • •
$180.013$ $\pm0.028$
MUMM
01
 
CNTR See CHUPP 2012
$179.71$ $\pm0.39$
EROZOLIMSKII
97
 
CNTR Cold ${{\mathit n}}$, polarized
$180.35$ $\pm0.43$
EROZOLIMSKII
97
 
CNTR Cold ${{\mathit n}}$, polarized
$181.1$ $\pm1.3$ 1
KROPF
97
 
RVUE ${{\mathit n}}$ decay
$180.14$ $\pm0.22$
STEINBERG
97
 
CNTR Cold ${{\mathit n}}$, polarized
1  KROPF 1974 reviews all data through 1972.
Conservation Laws:
TIME REVERSAL ($\mathit T$) INVARIANCE
References