CONSTRAINED FIT INFORMATION show precise values?
 
A multiparticle fit to ${{\mathit \eta}_{{{c}}}{(1S)}}$, ${{\mathit J / \psi}{(1S)}}$, ${{\mathit \psi}{(2S)}}$, ${{\mathit h}_{{{c}}}{(1P)}}$ and ${{\mathit B}^{\pm}}$ with the total width, 10 combinations of partial widths obtained from integrated cross section, and 38 branching ratios uses 113 measurements to determine 19 parameters. The overall fit has a $\chi {}^{2}$ = 184.6 for 94 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x1 100
 x6  100
 x9   100
 x16    100
 x18     100
 x37      100
 x38       100
 x41        100
 x45         100
 x48          100
 x51           100
 x53            100
 x54             100
 x59              100
 x${{\mathit h}_{{{c}}}{(1P)}}$25               100
 x${{\mathit \psi}{(2S)}}$182                100
 x${{\mathit J / \psi}{(1S)}}$237                 100
 x${{\mathit B}^{\pm}}$254                  100
 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$                   100
   x1  x6  x9  x16  x18  x37  x38  x41  x45  x48  x51  x53  x54  x59  x${{\mathit h}_{{{c}}}{(1P)}}$25  x${{\mathit \psi}{(2S)}}$182  x${{\mathit J / \psi}{(1S)}}$237  x${{\mathit B}^{\pm}}$254 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$
 
    Mode RateScale factor

Γ1  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}}{{\mathit \pi}}$ ($2.0$ $\pm0.4$) $ \times 10^{-2}$ 1.4
Γ6  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}}{{\overline{\mathit K}}^{*}{(892)}}$ ($7.0$ $\pm1.2$) $ \times 10^{-3}$ 
Γ9  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.8$ $\pm0.4$) $ \times 10^{-3}$ 2.3
Γ16  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \omega}}$ ($2.7$ $\pm0.9$) $ \times 10^{-3}$ 2.1
Γ18  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit f}_{{{2}}}{(1270)}}{{\mathit f}_{{{2}}}{(1270)}}$ ($1.08$ $\pm0.27$) $ \times 10^{-2}$ 
Γ37  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ ($7.1$ $\pm0.4$) $ \times 10^{-2}$ 1.1
Γ38  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \eta}}$ ($1.32$ $\pm0.15$) $ \times 10^{-2}$ 
Γ41  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.3$ $\pm1.8$) $ \times 10^{-3}$ 1.9
Γ45  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit K}^{+}}{{\mathit K}^{-}}$) ($1.4$ $\pm0.4$) $ \times 10^{-3}$ 1.4
Γ48  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($9.6$ $\pm1.5$) $ \times 10^{-3}$ 1.4
Γ51  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($1.33$ $\pm0.11$) $ \times 10^{-3}$ 1.1
Γ53  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.7$ $\pm0.5$) $ \times 10^{-3}$ 
Γ54  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.10$ $\pm0.28$) $ \times 10^{-3}$ 1.5
Γ59  ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($1.66$ $\pm0.13$) $ \times 10^{-4}$ 1.2
Γ${{\mathit h}_{{{c}}}{(1P)}}$25  ${{\mathit h}_{{{c}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($6.0$ $\pm0.4$) $ \times 10^{-1}$ 
Γ${{\mathit \psi}{(2S)}}$182  ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($3.6$ $\pm0.5$) $ \times 10^{-3}$ 1.3
Γ${{\mathit J / \psi}{(1S)}}$237  ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($1.41$ $\pm0.14$) $ \times 10^{-2}$ 1.3
Γ${{\mathit B}^{\pm}}$254  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \eta}_{{{c}}}}{{\mathit K}^{+}}$ ($1.10$ $\pm0.07$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$ ${{\mathit \eta}_{{{c}}}{(1S)}}$ WIDTH $30.5$ $\pm0.5$ (MeV) 1.2