CONSTRAINED FIT INFORMATION show precise values?
 
A multiparticle fit to ${{\mathit B}^{\pm}}$, ${{\mathit \eta}_{{{c}}}{(1S)}}$, ${{\mathit J / \psi}{(1S)}}$, ${{\mathit \psi}{(2S)}}$ and ${{\mathit h}_{{{c}}}{(1P)}}$ with the total width, 10 combinations of partial widths obtained from integrated cross section, and 38 branching ratios uses 113 measurements to determine 19 parameters. The overall fit has a $\chi {}^{2}$ = 184.6 for 94 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x270 100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$1  100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$6   100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$9    100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$16     100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$18      100
 x${{\mathit h}_{{{c}}}{(1P)}}$30       100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$37        100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$38         100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$41          100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$45           100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$48            100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$51             100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$53              100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$54               100
 x${{\mathit \eta}_{{{c}}}{(1S)}}$59                100
 x${{\mathit \psi}{(2S)}}$184                 100
 x${{\mathit J / \psi}{(1S)}}$245                  100
 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$                   100
   x270  x${{\mathit \eta}_{{{c}}}{(1S)}}$1  x${{\mathit \eta}_{{{c}}}{(1S)}}$6  x${{\mathit \eta}_{{{c}}}{(1S)}}$9  x${{\mathit \eta}_{{{c}}}{(1S)}}$16  x${{\mathit \eta}_{{{c}}}{(1S)}}$18  x${{\mathit h}_{{{c}}}{(1P)}}$30  x${{\mathit \eta}_{{{c}}}{(1S)}}$37  x${{\mathit \eta}_{{{c}}}{(1S)}}$38  x${{\mathit \eta}_{{{c}}}{(1S)}}$41  x${{\mathit \eta}_{{{c}}}{(1S)}}$45  x${{\mathit \eta}_{{{c}}}{(1S)}}$48  x${{\mathit \eta}_{{{c}}}{(1S)}}$51  x${{\mathit \eta}_{{{c}}}{(1S)}}$53  x${{\mathit \eta}_{{{c}}}{(1S)}}$54  x${{\mathit \eta}_{{{c}}}{(1S)}}$59  x${{\mathit \psi}{(2S)}}$184  x${{\mathit J / \psi}{(1S)}}$245 Γ${{\mathit \eta}_{{{c}}}{(1S)}}$
 
    Mode RateScale factor

Γ270 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \eta}_{{{c}}}}{{\mathit K}^{+}}$ ($1.10$ $\pm0.07$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$1 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \eta}^{\,'}{(958)}}{{\mathit \pi}}{{\mathit \pi}}$ ($2.0$ $\pm0.4$) $ \times 10^{-2}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$6 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}}{{\overline{\mathit K}}^{*}{(892)}}$ ($7.0$ $\pm1.2$) $ \times 10^{-3}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$9 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \phi}}{{\mathit \phi}}$ ($1.8$ $\pm0.4$) $ \times 10^{-3}$ 2.3
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$16 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \omega}}$ ($2.7$ $\pm0.9$) $ \times 10^{-3}$ 2.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$18 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit f}_{{{2}}}{(1270)}}{{\mathit f}_{{{2}}}{(1270)}}$ ($1.08$ $\pm0.27$) $ \times 10^{-2}$ 
Γ${{\mathit h}_{{{c}}}{(1P)}}$30 ${{\mathit h}_{{{c}}}{(1P)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($6.0$ $\pm0.4$) $ \times 10^{-1}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$37 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \pi}}$ ($7.1$ $\pm0.4$) $ \times 10^{-2}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$38 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}}{{\overline{\mathit K}}}{{\mathit \eta}}$ ($1.32$ $\pm0.15$) $ \times 10^{-2}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$41 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit K}^{-}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($8.3$ $\pm1.8$) $ \times 10^{-3}$ 1.9
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$45 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit K}^{+}}{{\mathit K}^{-}}$) ($1.4$ $\pm0.4$) $ \times 10^{-3}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$48 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ 2( ${{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$) ($9.6$ $\pm1.5$) $ \times 10^{-3}$ 1.4
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$51 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}$ ($1.33$ $\pm0.11$) $ \times 10^{-3}$ 1.1
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$53 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit p}}{{\overline{\mathit p}}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($3.7$ $\pm0.5$) $ \times 10^{-3}$ 
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$54 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \Lambda}}{{\overline{\mathit \Lambda}}}$ ($1.10$ $\pm0.28$) $ \times 10^{-3}$ 1.5
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$59 ${{\mathit \eta}_{{{c}}}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \gamma}}$ ($1.66$ $\pm0.13$) $ \times 10^{-4}$ 1.2
Γ${{\mathit \psi}{(2S)}}$184 ${{\mathit \psi}{(2S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($3.6$ $\pm0.5$) $ \times 10^{-3}$ 1.3
Γ${{\mathit J / \psi}{(1S)}}$245 ${{\mathit J / \psi}{(1S)}}$ $\rightarrow$ ${{\mathit \gamma}}{{\mathit \eta}_{{{c}}}{(1S)}}$ ($1.41$ $\pm0.14$) $ \times 10^{-2}$ 1.3
Γ${{\mathit \eta}_{{{c}}}{(1S)}}$ ${{\mathit \eta}_{{{c}}}{(1S)}}$ WIDTH $30.5$ $\pm0.5$ (MeV) 1.2

 
An overall fit to 21 branching ratios uses 66 measurements to determine 13 parameters. The overall fit has a $\chi {}^{2}$ = 68.7 for 53 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $p$_{i}\delta $p$_{j}$> $/$ ($\mathit \delta $p$_{i}\cdot{}\delta $p$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{{i}}}}$, including the branching fractions, $\mathit x_{i}$ = $\Gamma _{i}$ $/$ $\Gamma _{total}$.
 
 x10 100
 x13  100
 x57   100
 x114    100
 x156     100
 x311      100
 x316       100
 x334        100
 x347         100
 x387          100
 x448           100
 x639            100
 x646             100
   x10  x13  x57  x114  x156  x311  x316  x334  x347  x387  x448  x639  x646
 
    Mode Fraction (Γi / Γ)Scale factor

Γ10 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{{\mathit \ell}}}}}}$ ($5.60$ $\pm0.26$) $ \times 10^{-2}$ 1.5
Γ13 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{{\tau}}}}$ ($1.88$ $\pm0.20$) $ \times 10^{-2}$ 
Γ57 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}$ ($4.61$ $\pm0.10$) $ \times 10^{-3}$ 
Γ114 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ($5.5$ $\pm2.0$) $ \times 10^{-3}$ 3.6
Γ156 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}_{{{1}}}{(2420)}^{0}}{{\mathit \pi}^{+}}$ ${\times }$ B(${{\overline{\mathit D}}_{{{1}}}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$)  ($2.5$ ${}^{+1.6}_{-1.4}$) $ \times 10^{-4}$ 3.8
Γ311 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}$ ($1.020$ $\pm0.019$) $ \times 10^{-3}$ 
Γ316 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{+}}$ ($1.43$ $\pm0.08$) $ \times 10^{-3}$ 
Γ334 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}$ ($3.92$ $\pm0.09$) $ \times 10^{-5}$ 
Γ347 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{+}}$ ($6.24$ $\pm0.21$) $ \times 10^{-4}$ 
Γ387 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}$ ($2.39$ $\pm0.06$) $ \times 10^{-5}$ 
Γ448 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($1.32$ $\pm0.17$) $ \times 10^{-6}$ 1.2
Γ639 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($4.53$ $\pm0.35$) $ \times 10^{-7}$ 1.8
Γ646 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($9.6$ $\pm1.0$) $ \times 10^{-7}$