CONSTRAINED FIT INFORMATION show precise values?
 
An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 3.7 for 4 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$ , including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x346  100
 x407   100
   x346  x407
 
  Mode Fraction (Γi / Γ)Scale factor

Γ346  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}$  ($2.37$ $\pm0.08$) $ \times 10^{-5}$ 
Γ407  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$  ($1.31$ $\pm0.17$) $ \times 10^{-6}$ 1.2

 
An overall fit to 18 branching ratios uses 58 measurements and one constraint to determine 12 parameters. The overall fit has a $\chi {}^{2}$ = 64.2 for 47 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$ , including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x7  100
 x8   100
 x51    100
 x108     100
 x149      100
 x276       100
 x281        100
 x299         100
 x311          100
 x576           100
 x583            100
   x7  x8  x51  x108  x149  x276  x281  x299  x311  x576  x583
 
  Mode Fraction (Γi / Γ)Scale factor

Γ7  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$  $0.0560$ $\pm0.0026$ 1.5
Γ8  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$  $0.0188$ $\pm0.0020$ 
Γ51  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}$  $0.00468$ $\pm0.00013$ 
Γ108  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0056$ $\pm0.0021$ 3.6
Γ149  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}_{{1}}{(2420)}^{0}}{{\mathit \pi}^{+}}$ ${\times }$ B( ${{\overline{\mathit D}}_{{1}}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ )  ($2.5$ ${}^{+1.6}_{-1.4}$) $ \times 10^{-4}$ 3.9
Γ276  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}$  $0.001020$ $\pm0.000019$ 
Γ281  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{+}}$  $0.00143$ $\pm0.00008$ 
Γ299  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}$  ($3.92$ $\pm0.08$) $ \times 10^{-5}$ 
Γ311  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{+}}$  ($6.24$ $\pm0.20$) $ \times 10^{-4}$ 
Γ576  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($4.53$ $\pm0.35$) $ \times 10^{-7}$ 1.8
Γ583  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($9.6$ $\pm1.0$) $ \times 10^{-7}$