CONSTRAINED FIT INFORMATIONshow precise values?

 
An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 3.7 for 4 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x342  100
 x403   100
   x342  x403
 
  Mode Fraction (Γi / Γ)Scale factor

Γ342  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}$  ($2.37$ $\pm0.08$) $ \times 10^{-5}$ 
Γ403  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$  ($1.31$ $\pm0.17$) $ \times 10^{-6}$ 1.2

 
An overall fit to 18 branching ratios uses 58 measurements and one constraint to determine 12 parameters. The overall fit has a $\chi {}^{2}$ = 55.9 for 47 degrees of freedom.
 
The following off-diagonal array elements are the correlation coefficients <$\mathit \delta $x$_{i}$~$\delta $x$_{j}$> $/$ ($\mathit \delta $x$_{i}\cdot{}\delta $x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.
 
 x6  100
 x7   100
 x49    100
 x105     100
 x146      100
 x275       100
 x280        100
 x299         100
 x311          100
 x571           100
 x578            100
   x6  x7  x49  x105  x146  x275  x280  x299  x311  x571  x578
 
  Mode Fraction (Γi / Γ)Scale factor

Γ6  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$  $0.0560$ $\pm0.0026$ 1.5
Γ7  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$  $0.0188$ $\pm0.0020$ 
Γ49  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}$  $0.00468$ $\pm0.00013$ 
Γ105  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$  $0.0056$ $\pm0.0021$ 3.6
Γ146  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}_{{1}}{(2420)}^{0}}{{\mathit \pi}^{+}}$ ${\times }$ B( ${{\overline{\mathit D}}_{{1}}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ )  ($2.5$ ${}^{+1.6}_{-1.4}$) $ \times 10^{-4}$ 3.9
Γ275  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}$  $0.001006$ $\pm0.000027$ 
Γ280  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{+}}$  $0.00143$ $\pm0.00008$ 
Γ299  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}$  ($3.87$ $\pm0.11$) $ \times 10^{-5}$ 
Γ311  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{+}}$  ($6.19$ $\pm0.22$) $ \times 10^{-4}$ 
Γ571  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($4.41$ $\pm0.22$) $ \times 10^{-7}$ 1.2
Γ578  ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$  ($9.6$ $\pm1.0$) $ \times 10^{-7}$