# CONSTRAINED FIT INFORMATIONshow precise values?

 An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi {}^{2}$ = 3.7 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}$~$\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.

 x342 100 x403 100 x342 x403

 Mode Fraction (Γi / Γ) Scale factor Γ342 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{0}}{{\mathit \pi}^{+}}$ ($2.37$ $\pm0.08$) $\times 10^{-5}$ Γ403 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\overline{\mathit K}}^{0}}$ ($1.31$ $\pm0.17$) $\times 10^{-6}$ 1.2

 An overall fit to 18 branching ratios uses 58 measurements and one constraint to determine 12 parameters. The overall fit has a $\chi {}^{2}$ = 55.9 for 47 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients <$\mathit \delta$x$_{i}$~$\delta$x$_{j}$> $/$ ($\mathit \delta$x$_{i}\cdot{}\delta$x$_{j}$), in percent, from the fit to parameters ${{\mathit p}_{{i}}}$, including the branching fractions, $\mathit x_{i}$ =$\Gamma _{i}$ $/$ $\Gamma _{total}$. The fit constrains the ${{\mathit x}_{{i}}}$ whose labels appear in this array to sum to one.

 x6 100 x7 100 x49 100 x105 100 x146 100 x275 100 x280 100 x299 100 x311 100 x571 100 x578 100 x6 x7 x49 x105 x146 x275 x280 x299 x311 x571 x578

 Mode Fraction (Γi / Γ) Scale factor Γ6 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \ell}^{+}}{{\mathit \nu}_{{{{\mathit \ell}}}}}$ $0.0560$ $\pm0.0026$ 1.5 Γ7 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{*}{(2007)}^{0}}{{\mathit \tau}^{+}}{{\mathit \nu}_{{\tau}}}$ $0.0188$ $\pm0.0020$ Γ49 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}$ $0.00468$ $\pm0.00013$ Γ105 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ $0.0056$ $\pm0.0021$ 3.6 Γ146 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\overline{\mathit D}}_{{1}}{(2420)}^{0}}{{\mathit \pi}^{+}}$ ${\times }$ B( ${{\overline{\mathit D}}_{{1}}^{0}}$ $\rightarrow$ ${{\overline{\mathit D}}^{0}}{{\mathit \pi}^{+}}{{\mathit \pi}^{-}}$ ) ($2.5$ ${}^{+1.6}_{-1.4}$) $\times 10^{-4}$ 3.9 Γ275 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{+}}$ $0.001006$ $\pm0.000027$ Γ280 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit K}^{*}{(892)}^{+}}$ $0.00143$ $\pm0.00008$ Γ299 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit J / \psi}{(1S)}}{{\mathit \pi}^{+}}$ ($3.87$ $\pm0.11$) $\times 10^{-5}$ Γ311 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit \psi}{(2S)}}{{\mathit K}^{+}}$ ($6.19$ $\pm0.22$) $\times 10^{-4}$ Γ571 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($4.41$ $\pm0.22$) $\times 10^{-7}$ 1.2 Γ578 ${{\mathit B}^{+}}$ $\rightarrow$ ${{\mathit K}^{*}{(892)}^{+}}{{\mathit \mu}^{+}}{{\mathit \mu}^{-}}$ ($9.6$ $\pm1.0$) $\times 10^{-7}$