CHARMED BARYONS($\mathit C$ = $+1$) ${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$

#### ${{\mathit \Sigma}_{{c}}{(2455)}}$

$I(J^P)$ = $1(1/2^{+})$
The angular distribution of ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\overline{\mathit p}}}$ favors $\mathit J = 1/2$ (as the quark model predicts). $\mathit J = 3/2$ is excluded by more than four standard deviations; see AUBERT 2008BN.
${{\mathit \Sigma}_{{c}}{(2455)}}$ MASSES
 ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}$ MASS $2453.97 \pm0.14$ MeV
 ${{\mathit \Sigma}_{{c}}{(2455)}^{+}}$ MASS $2452.65 {}^{+0.22}_{-0.16}$ MeV
 ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}$ MASS $2453.75 \pm0.14$ MeV
${{\mathit \Sigma}_{{c}}{(2455)}}–{{\mathit \Lambda}_{{c}}^{+}}$ MASS DIFFERENCES
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{++}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$ $167.510 \pm0.017$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{+}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$ $166.19 {}^{+0.16}_{-0.08}$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{0}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$ $167.290 \pm0.017$ MeV
${{\mathit \Sigma}_{{c}}{(2455)}}$ MASS DIFFERENCES
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{++}}}–{\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{0}}}$ $0.220 \pm0.013$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{+}}}–{\mathit m}_{{{\mathit \Sigma}_{{c}}{(2455)}^{0}}}$ $-1.10 {}^{+0.16}_{-0.08}$ MeV
${{\mathit \Sigma}_{{c}}{(2455)}}$ WIDTHS
 ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}$ WIDTH $1.89 {}^{+0.09}_{-0.18}$ MeV (S = 1.1)
 ${{\mathit \Sigma}_{{c}}{(2455)}^{+}}$ WIDTH $2.3 \pm0.4$ MeV
 ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}$ WIDTH $1.83 {}^{+0.11}_{-0.19}$ MeV (S = 1.2)
${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Sigma}_{{c}}}$ having this mass.
 $\Gamma_{1}$ ${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}$ $\approx{}100\%$ 94
 FOOTNOTES