CHARMED BARYONS($\boldsymbol C$ = $+1$) ${{\mathit \Lambda}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{++}}$ = ${{\mathit u}}{{\mathit u}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit d}}{{\mathit c}}$ , ${{\mathit \Sigma}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit d}}{{\mathit c}}$ ,${{\mathit \Xi}_{{c}}^{+}}$ = ${{\mathit u}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Xi}_{{c}}^{0}}$ = ${{\mathit d}}{{\mathit s}}{{\mathit c}}$ , ${{\mathit \Omega}_{{c}}^{0}}$ = ${{\mathit s}}{{\mathit s}}{{\mathit c}}$ INSPIRE search

# ${{\boldsymbol \Sigma}_{{c}}{(2455)}}$ $I(J^P)$ = $1(1/2^{+})$

The angular distribution of ${{\mathit B}^{-}}$ $\rightarrow$ ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}{{\overline{\mathit p}}}$ favors $\mathit J = 1/2$ (as the quark model predicts). $\mathit J = 3/2$ is excluded by more than four standard deviations; see AUBERT 2008BN.
${{\boldsymbol \Sigma}_{{c}}{(2455)}}$ MASSES
 ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}$ MASS $2453.97 \pm0.14$ MeV
 ${{\mathit \Sigma}_{{c}}{(2455)}^{+}}$ MASS $2452.9 \pm0.4$ MeV
 ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}$ MASS $2453.75 \pm0.14$ MeV
${{\boldsymbol \Sigma}_{{c}}{(2455)}}–{{\boldsymbol \Lambda}_{{c}}^{+}}$ MASS DIFFERENCES
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}^{++}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$ $167.510 \pm0.017$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}^{+}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$ $166.4 \pm0.4$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}^{0}}}–{\mathit m}_{{{\mathit \Lambda}_{{c}}^{+}}}$ $167.290 \pm0.017$ MeV
${{\boldsymbol \Sigma}_{{c}}{(2455)}}$ MASS DIFFERENCES
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}^{++}}}–{\mathit m}_{{{\mathit \Sigma}_{{c}}^{0}}}$ $0.220 \pm0.013$ MeV
 ${\mathit m}_{{{\mathit \Sigma}_{{c}}^{+}}}–{\mathit m}_{{{\mathit \Sigma}_{{c}}^{0}}}$ $-0.9 \pm0.4$ MeV
${{\boldsymbol \Sigma}_{{c}}{(2455)}}$ WIDTHS
 ${{\mathit \Sigma}_{{c}}{(2455)}^{++}}$ WIDTH $1.89 {}^{+0.09}_{-0.18}$ MeV (S = 1.1)
 ${{\mathit \Sigma}_{{c}}{(2455)}^{+}}$ WIDTH $<4.6$ MeV  CL=90.0%
 ${{\mathit \Sigma}_{{c}}{(2455)}^{0}}$ WIDTH $1.83 {}^{+0.11}_{-0.19}$ MeV (S = 1.2)
${{\mathit \Lambda}_{{c}}^{+}}{{\mathit \pi}}$ is the only strong decay allowed to a ${{\mathit \Sigma}_{{c}}}$ having this mass.