($\boldsymbol S$ = $\boldsymbol C$ = $\boldsymbol B$ = 0)
For $\mathit I = 1$ (${{\mathit \pi}}$, ${{\mathit b}}$, ${{\mathit \rho}}$, ${{\mathit a}}$): ${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit d}}}$, ( ${\mathit {\mathit u}}$ ${\mathit {\overline{\mathit u}}}−$ ${\mathit {\mathit d}}$ ${\mathit {\overline{\mathit d}}})/\sqrt {2 }$, ${\mathit {\mathit d}}$ ${\mathit {\overline{\mathit u}}}$;
for $\mathit I = 0$ (${{\mathit \eta}}$, ${{\mathit \eta}^{\,'}}$, ${{\mathit h}}$, ${{\mathit h}^{\,'}}$, ${{\mathit \omega}}$, ${{\mathit \phi}}$, ${{\mathit f}}$, ${{\mathit f}^{\,'}}$): ${\mathit {\mathit c}}_{{\mathrm {1}}}$( ${{\mathit u}}{{\overline{\mathit u}}}$ $+$ ${{\mathit d}}{{\overline{\mathit d}}}$ ) $+$ ${\mathit {\mathit c}}_{{\mathrm {2}}}$( ${{\mathit s}}{{\overline{\mathit s}}}$ )
INSPIRE search

${{\boldsymbol h}_{{1}}{(1595)}}$ $I^G(J^{PC})$ = $0^-(1^{+ -})$ 

Seen in a partial-wave analysis of the ${{\mathit \omega}}{{\mathit \eta}}$ system produced in the reaction ${{\mathit \pi}^{-}}$ ${{\mathit p}}$ $\rightarrow$ ${{\mathit \omega}}{{\mathit \eta}}{{\mathit n}}$ at 18$~$GeV/$\mathit c$.
${{\mathit h}_{{1}}{(1595)}}$ MASS   $1594 {}^{+18}_{-60}$ MeV 
${{\mathit h}_{{1}}{(1595)}}$ WIDTH   $384 {}^{+90}_{-120}$ MeV 
$\Gamma_{1}$ ${{\mathit \omega}}{{\mathit \eta}}$  seen 434